Renal cell carcinoma (RCC), a human kidney cancer from the proximal tubular epithelium, accounts for about 3% of adult malignancies. Molecular and cytogenetic analysis have highlighted deletions, translocations, or loss of heterozygosity in the 3p21-p26, a putative RCC locus, as well as in 6q, 8p, 9pq, and 14pq. Studies on phenotypic expression of human kidney tissue and on post-translational modifications in RCC have not yet provided a marker for early renal cell carcinoma diagnosis. Current diagnostic methods do not help to detect the tumor before advanced stages. We therefore used two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) to study normal and tumor kidney tissues in ten patients suffering from RCC. A human kidney protein map in the SWISS-2DPAGE database accessible through the ExPASy WWW Molecular Biology Server was established. Of 2789 separated polypeptides, 43 were identified by gel comparison, amino acid analysis, N-terminal sequencing, and/or immunodetection. The comparison between normal and tumor kidney tissues showed four polypeptides to be absent in RCC. One of them was identified as ubiquinol cytochrome c reductase (UQCR), whose locus has elsewhere been tentatively assigned to chromosome 19p12 or chromosome 22. A second polypeptide was identified as mitochondrial NADH-ubiquinone oxido-reductase complex I whose locus is located on chromosome 18p11.2 and chromosome 19q13.3. These result suggest that the lack of UQCR and of mitochondrial NADH-ubiquinone oxidoreductase complex I expression in RCC may be caused by unknown deletions, or by changes in gene transcription or translation. It might indicate that mitochondrial disfunction plays a major role in RCC genesis or evolution.
Two‐dimensional polyacrylamide gel electrophoresis (2‐D PAGE) is a powerful tool to separate thousands of polypeptides and to highlight the modification of protein expression in malignant diseases. By applying 2‐D PAGE to ten normal human kidney and ten homologous renal cell carcinoma (RCC) tissues, we found two peptides in all ten normal tissues but not in RCCs and, conversely, two peptides were detected in all RCCs but not in normal tissues. Using matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry (MALDI‐TOF‐MS) and internal sequence analysis, the two first peptides were identified as two isoforms of plasma glutathione peroxidase (GPxP). The two other peptides isolated in all RCCs but not in normal tissues were identified by N‐terminal sequence analysis as multimeric forms of manganese superoxide dismutase (Mn‐SOD). No multimeric Mn‐SODs and only two monomeric forms were detected in normal tissues. GPxP and Mn‐SOD are metallo‐enzymes encoded on chromosome 5q32 and on chromosome 6p25, respectively. Their regions are within the locus 5q21 → qter and 6q21‐6q27 on which deletions and translocations are described in some cytogenetic studies of RCC transformation. Therefore, our results might suggest a correlation between the modified expression of GPxP and Mn‐SOD in tumor tissues and chromosomal modifications, and that the two proteins may be putative markers for diagnosis of RCC.*
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.