The relationship between nitric oxide (NO) and salicylic acid (SA) was investigated in Arabidopsis thaliana. Here it is shown that SA is able to induce NO synthesis in a dose-dependent manner in Arabidopsis. NO production was detected by confocal microscopic analysis and spectrofluorometric assay in plant roots and cultured cells. To identify the metabolic pathways involved in SA-induced NO synthesis, genetic and pharmacological approaches were adopted. The analysis of the nia1,nia2 mutant showed that nitrate reductase activity was not required for SA-induced NO production. Experiments performed in the presence of a nitric oxide synthase (NOS) inhibitor suggested the involvement of NOS-like enzyme activity in this metabolic pathway. Moreover, the production of NO by SA treatment of Atnos1 mutant plants was strongly reduced compared with wild-type plants. Components of the SA signalling pathway giving rise to NO production were identified, and both calcium and casein kinase 2 (CK2) were demonstrated to be involved. Taken together, these results suggest that SA induces NO production at least in part through the activity of a NOS-like enzyme and that calcium and CK2 activity are essential components of the signalling cascade.
Endophytism within Vitis represents a topic of critical relevance due to the multiple standpoints from which it can be approached and considered. From the biological and botanical perspectives, the interaction between microorganisms and perennial woody plants falls within the category of stable relationships from which the plants can benefit in multiple ways. The life cycle of the host ensures persistence in all seasons, repeated chances of contact, and consequent microbiota accumulation over time, leading to potentially high diversity compared with that of herbaceous short-lived plants. Furthermore, grapevines are agriculturally exploited, highly selected germplasms where a profound man-driven footprint has indirectly and unconsciously shaped the inner microbiota through centuries of cultivation and breeding. Moreover, since endophyte metabolism can contribute to that of the plant host and its fruits’ biochemical composition, the nature of grapevine endophytic taxa identities, ecological attitudes, potential toxicity, and clinical relevance are aspects worthy of a thorough investigation. Can endophytic taxa efficiently defend grapevines by acting against pests or confer enough fitness to the plants to endure attacks? What are the underlying mechanisms that translate into this or other advantages in the hosting plant? Can endophytes partially redirect plant metabolism, and to what extent do they act by releasing active products? Is the inner microbial colonization necessary priming for a cascade of actions? Are there defined environmental conditions that can trigger the unleashing of key microbial phenotypes? What is the environmental role in providing the ground biodiversity by which the plant can recruit microsymbionts? How much and by what practices and strategies can these symbioses be managed, applied, and directed to achieve the goal of a better sustainable viticulture? By thoroughly reviewing the available literature in the field and critically examining the data and perspectives, the above issues are discussed.
In this report, we show that nitric oxide affects mitochondrial functionality in plant cells and reduces total cell respiration due to strong inhibition of the cytochrome pathway. The residual respiration depends on the alternative pathway and novel synthesis of alternative oxidase occurs. These modifications are associated with depolarisation of the mitochondrial membrane potential and release of cytochrome c from mitochondria, suggesting a conserved signalling pathway in plants and animals. This signal cascade is triggered at the mitochondrial level and induces about 20% of cell death. In order to achieve a higher level of cell death, the addition of H 2 O 2 is necessary.
High concentrations of cytokinins block cell proliferation and induce programmed cell death (PCD) in both carrot (Daucus carota L.) and Arabidopsis thaliana (L.) Heynh. cell cultures [13 and 27 lM N 6benzylaminopurine (BAP), respectively]. In the present work, cell death was scored by Evan's blue staining and was also demonstrated to be programmed by various parameters, including chromatin condensation, oligonucleosomal DNA degradation (laddering), and release of cytochrome c from mitochondria. In carrot cells, this induction takes approximately 24 h, with proliferating cells being more sensitive than quiescent ones. Two hormones, namely abscisic acid and 2,4-dichlorophenoxyacetic acid (2,4-D), protect cells against the cytokinin-induced death. PCD is not merely a consequence of the inability of the culture to proliferate, since high levels of 2,4-D block carrot cell proliferation without promoting PCD. Increased ethylene production was also observed in BAP-treated cultures, although this increase was not responsible for PCD because inhibitors of ethylene synthesis and action did not block PCD in BAPtreated cultures. Programmed cell death in the form of DNA laddering was also seen in plants treated with cytokinins. This process was accompanied by accelerated senescence in the form of leaf yellowing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.