Biological communities often occur in spatially structured habitats where connectivity directly affects dispersal and metacommunity processes. Recent theoretical work suggests that dispersal constrained by the connectivity of specific habitat structures, such as dendrites like river networks, can explain observed features of biodiversity, but direct evidence is still lacking. We experimentally show that connectivity per se shapes diversity patterns in microcosm metacommunities at different levels. Local dispersal in isotropic lattice landscapes homogenizes local species richness and leads to pronounced spatial persistence. On the contrary, dispersal along dendritic landscapes leads to higher variability in local diversity and among-community composition. Although headwaters exhibit relatively lower species richness, they are crucial for the maintenance of regional biodiversity. Our results establish that spatially constrained dendritic connectivity is a key factor for community composition and population persistence.A major aim of community ecology is to identify processes that define large-scale biodiversity patterns (1-8). For simplified landscapes, often described geometrically by linear or lattice structures, a variety of local environmental factors have been brought forward as the elements creating and maintaining diversity among habitats (9-12). Many highly diverse landscapes, however, exhibit hierarchical spatial structures that are shaped by geomorphological processes and neither linear nor 2D environmental matrices may be appropriate to describe biodiversity of species living within dendritic ecosystems (13,14). Furthermore, in many environments intrinsic disturbance events contribute to spatiotemporal heterogeneity (14, 15). Riverine ecosystems, among the most diverse habitats on earth (16), represent an outstanding example of such mechanisms (7,(17)(18)(19).Here, we investigate the effects of directional dispersal imposed by the habitat-network structure on the biodiversity of metacommunities (MCs), by conducting a laboratory experiment using aquatic microcosms. Experiments were conducted in 36-well culture plates (Fig. 1), thus imposing by construction a metacommunity structure (20, 21): Each well hosted a local community (LC) within the whole landscape and dispersal occurred by periodic transfer of culture medium among connected LCs (22), following two different geometries (Materials and Methods, Fig. S1, and SI Materials and Methods). We compared spatially heterogeneous MCs following a river network (RN) geometry (Fig. 1D), with spatially homogeneous MCs, in which every LC has a 2D lattice of four nearest neighbors (2D) (Fig. 1E). The coarse-grained RN landscape is derived from a scheme (13) known to reproduce the scaling properties observed in real river systems (Fig. 1A).To single out the effects of connectivity, we deliberately avoided reproducing other geomorphic features of real river networks, such as the bias in downstream dispersal, the growing habitat capacity with accumulated contributing...
Marine phytoplankton inhabit a dynamic environment where turbulence, together with nutrient and light availability, shapes species fitness, succession and selection. Many species of phytoplankton are motile and undertake diel vertical migrations to gain access to nutrient-rich deeper layers at night and well-lit surface waters during the day. Disruption of this migratory strategy by turbulence is considered to be an important cause of the succession between motile and non-motile species when conditions turn turbulent. However, this classical view neglects the possibility that motile species may actively respond to turbulent cues to avoid layers of strong turbulence. Here we report that phytoplankton, including raphidophytes and dinoflagellates, can actively diversify their migratory strategy in response to hydrodynamic cues characteristic of overturning by Kolmogorov-scale eddies. Upon experiencing repeated overturning with timescales and statistics representative of ocean turbulence, an upward-swimming population rapidly (5-60 min) splits into two subpopulations, one swimming upward and one swimming downward. Quantitative morphological analysis of the harmful-algal-bloom-forming raphidophyte Heterosigma akashiwo together with a model of cell mechanics revealed that this behaviour was accompanied by a modulation of the cells' fore-aft asymmetry. The minute magnitude of the required modulation, sufficient to invert the preferential swimming direction of the cells, highlights the advanced level of control that phytoplankton can exert on their migratory behaviour. Together with observations of enhanced cellular stress after overturning and the typically deleterious effects of strong turbulence on motile phytoplankton, these results point to an active adaptation of H. akashiwo to increase the chance of evading turbulent layers by diversifying the direction of migration within the population, in a manner suggestive of evolutionary bet-hedging. This migratory behaviour relaxes the boundaries between the fluid dynamic niches of motile and non-motile phytoplankton, and highlights that rapid responses to hydrodynamic cues are important survival strategies for phytoplankton in the ocean.
Habitat fragmentation and land use changes are causing major biodiversity losses. Connectivity of the landscape or environmental conditions alone can shape biodiversity patterns. In nature, however, local habitat characteristics are often intrinsically linked to a specific connectivity. Such a link is evident in riverine ecosystems, where hierarchical dendritic structures command related scaling on habitat capacity. We experimentally disentangled the effect of local habitat capacity (i.e., the patch size) and dendritic connectivity on biodiversity in aquatic microcosm metacommunities by suitably arranging patch sizes within river-like networks. Overall, more connected communities that occupy a central position in the network exhibited higher species richness, irrespective of patch size arrangement. High regional evenness in community composition was found only in landscapes preserving geomorphological scaling properties of patch sizes. In these landscapes, some of the rarer species sustained regionally more abundant populations better tracking their own niche requirements compared to landscapes with homogeneous patch size or landscapes with spatially uncorrelated patch size. Our analysis suggests that altering the natural link between dendritic connectivity and patch size strongly affects community composition and population persistence at multiple scales. The experimental results are demonstrating a principle that can be tested in theoretical metacommunity models and eventually be projected to real riverine ecosystems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.