In neurophysiology, nonhuman primates represent an important model for studying the brain. Typically, monkeys are moved from their home cage to an experimental room daily, where they sit in a primate chair and interact with electronic devices. Refining this procedure would make the researchers’ work easier and improve the animals’ welfare. To address this issue, we used home-cage training to train two macaque monkeys in a non-match-to-goal task, where each trial required a switch from the choice made in the previous trial to obtain a reward. The monkeys were tested in two versions of the task, one in which they acted as the agent in every trial and one in which some trials were completed by a “ghost agent”. We evaluated their involvement in terms of their performance and their interaction with the apparatus. Both monkeys were able to maintain a constant involvement in the task with good, stable performance within sessions in both versions of the task. Our study confirms the feasibility of home-cage training and demonstrates that even with challenging tasks, monkeys can complete a large number of trials at a high performance level, which is a prerequisite for electrophysiological studies of monkey behavior.
Making decisions based on the actions of others is critical to daily interpersonal interactions. We investigated the representations of other’s actions at single neural level in posterior medial prefrontal cortex (pmPFC) in two monkeys during the observation of actions of another agent, in a social interaction task. Each monkey separately interacted with a human partner. The monkey and the human alternated turns as actor and observer. The actor was required to reach one of two visual targets, avoiding the previously chosen target, while the observer monitored that action. pmPFC neurons decoupled in most cases self from others during both the execution and the observation of explicit actions. pmPFC neurons showed selective directional tuning specific for the agent who was executing the task. Moreover, we assessed the relationship of the response coding between the periods immediately before and after the action, by using a cross-modal decoding analysis. We found neural network stability from the action anticipation period to the observation of other’s actions, suggesting a strong relationship between the anticipation and the execution of an action. When the monkey was the actor, the population coding appeared dynamic, possibly reflecting a goal-action transformation unique to the monkey’s own action execution.
Social neurophysiology has increasingly addressed how several aspects of self and other are distinctly represented in the brain. In social interactions, the self–other distinction is fundamental for discriminating one’s own actions, intentions, and outcomes from those that originate in the external world. In this paper, we review neurophysiological experiments using nonhuman primates that shed light on the importance of the self–other distinction, focusing mainly on the frontal cortex. We start by examining how the findings are impacted by the experimental paradigms that are used, such as the type of social partner or whether a passive or active interaction is required. Next, we describe the 2 sociocognitive systems: mirror and mentalizing. Finally, we discuss how the self–other distinction can occur in different domains to process different aspects of social information: the observation and prediction of others’ actions and the monitoring of others’ rewards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.