Magnetic Resonance-guided radiotherapy (MRgRT) marks the beginning of a new era. MR is a versatile and suitable imaging modality for radiotherapy, as it enables direct visualization of the tumor and the surrounding organs at risk. Moreover, MRgRT provides real-time imaging to characterize and eventually track anatomical motion. Nevertheless, the successful translation of new technologies into clinical practice remains challenging. To date, the initial availability of next-generation hybrid MR-linac (MRL) systems is still limited and therefore, the focus of the present preview was on the initial applicability in current clinical practice and on future perspectives of this new technology for different treatment sites.
MRgRT can be considered a groundbreaking new technology that is capable of creating new perspectives towards an individualized, patient-oriented planning and treatment approach, especially due to the ability to use daily online adaptation strategies. Furthermore, MRL systems overcome the limitations of conventional image-guided radiotherapy, especially in soft tissue, where target and organs at risk need accurate definition. Nevertheless, some concerns remain regarding the additional time needed to re-optimize dose distributions online, the reliability of the gating and tracking procedures and the interpretation of functional MR imaging markers and their potential changes during the course of treatment. Due to its continuous technological improvement and rapid clinical large-scale application in several anatomical settings, further studies may confirm the potential disruptive role of MRgRT in the evolving oncological environment.
The aim of this study was to evaluate the variation of radiomics features, defined as “delta radiomics”, in patients undergoing neoadjuvant radiochemotherapy (RCT) for rectal cancer treated with hybrid magnetic resonance (MR)-guided radiotherapy (MRgRT). The delta radiomics features were then correlated with clinical complete response (cCR) outcome, to investigate their predictive power. A total of 16 patients were enrolled, and 5 patients (31%) showed cCR at restaging examinations.
T
2*/
T
1 MR images acquired with a hybrid 0.35 T MRgRT unit were considered for this analysis. An imaging acquisition protocol of 6 MR scans per patient was performed: the first MR was acquired at first simulation (
t
0) and the remaining ones at fractions 5, 10, 15, 20 and 25.
Radiomics features were extracted from the gross tumour volume (GTV), and each feature was correlated with the corresponding delivered dose. The variations of each feature during treatment were quantified, and the ratio between the values calculated at different dose levels and the one extracted at
t
0 was calculated too. The Wilcoxon–Mann–Whitney test was performed to identify the features whose variation can be predictive of cCR, assessed with a MR acquired 6 weeks after RCT and digital examination. The most predictive feature ratios in cCR prediction were the L_least and glnu ones, calculated at the second week of treatment (22 Gy) with a
p
value = 0.001. Delta radiomics approach showed promising results and the quantitative analysis of images throughout MRgRT treatment can successfully predict cCR offering an innovative personalized medicine approach to rectal cancer treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.