The aim of this study was to evaluate the variation of radiomics features, defined as “delta radiomics”, in patients undergoing neoadjuvant radiochemotherapy (RCT) for rectal cancer treated with hybrid magnetic resonance (MR)-guided radiotherapy (MRgRT). The delta radiomics features were then correlated with clinical complete response (cCR) outcome, to investigate their predictive power. A total of 16 patients were enrolled, and 5 patients (31%) showed cCR at restaging examinations. T 2*/ T 1 MR images acquired with a hybrid 0.35 T MRgRT unit were considered for this analysis. An imaging acquisition protocol of 6 MR scans per patient was performed: the first MR was acquired at first simulation ( t 0) and the remaining ones at fractions 5, 10, 15, 20 and 25. Radiomics features were extracted from the gross tumour volume (GTV), and each feature was correlated with the corresponding delivered dose. The variations of each feature during treatment were quantified, and the ratio between the values calculated at different dose levels and the one extracted at t 0 was calculated too. The Wilcoxon–Mann–Whitney test was performed to identify the features whose variation can be predictive of cCR, assessed with a MR acquired 6 weeks after RCT and digital examination. The most predictive feature ratios in cCR prediction were the L_least and glnu ones, calculated at the second week of treatment (22 Gy) with a p value = 0.001. Delta radiomics approach showed promising results and the quantitative analysis of images throughout MRgRT treatment can successfully predict cCR offering an innovative personalized medicine approach to rectal cancer treatment.
The aim of this study was to propose a methodology to investigate the tumour heterogeneity and evaluate its ability to predict pathologically complete response (pCR) after chemo-radiotherapy (CRT) in locally advanced rectal cancer (LARC). This approach consisted in normalising the pixel intensities of the tumour and identifying the different sub-regions using an intensity-based thresholding. The spatial organisation of these subpopulations was quantified using the fractal dimension (FD). This approach was implemented in a radiomic workflow and applied to 198 T2-weighted pre-treatment magnetic resonance (MR) images of LARC patients. Three types of features were extracted from the gross tumour volume (GTV): morphological, statistical and fractal features. Feature selection was performed using the Wilcoxon test and a logistic regression model was calculated to predict the pCR probability after CRT. The model was elaborated considering the patients treated in two institutions: Fondazione Policlinico Universitario "Agostino Gemelli" of Rome (173 cases, training set) and University Medical Centre of Maastricht (25 cases, validation set). The results obtained showed that the fractal parameters of the subpopulations have the highest performance in predicting pCR. The predictive model elaborated had an area under the curve (AUC) equal to 0.77 ± 0.07. The model reliability was confirmed by the validation set (AUC = 0.79 ± 0.09). This study suggests that the fractal analysis can play an important role in radiomics, providing valuable information not only about the GTV structure, but also about its inner subpopulations.
Background Different studies have proved in recent years that hypofractionated radiotherapy (RT) improves overall survival of patients affected by locally advanced, unresectable, pancreatic cancer. The clinical management of these patients generally leads to poor results and is considered very challenging, due to different factors, heavily influencing treatment delivery and its outcomes. Firstly, the dose prescribed to the target is limited by the toxicity that the highly radio-sensitive organs at risk (OARs) surrounding the disease can develop. Treatment delivery is also complicated by the significant inter-fractional and intra-fractional variability of therapy volumes, mainly related to the presence of hollow organs and to the breathing cycle. Main body of the abstract The recent introduction of magnetic resonance guided radiotherapy (MRgRT) systems leads to the opportunity to control most of the aforementioned sources of uncertainty influencing RT treatment workflow in pancreatic cancer. MRgRT offers the possibility to accurately identify radiotherapy volumes, thanks to the high soft-tissue contrast provided by the Magnetic Resonance imaging (MRI), and to monitor the tumour and OARs positions during the treatment fraction using a high-temporal cine MRI. However, the main advantage offered by the MRgRT is the possibility to online adapt the RT treatment plan, changing the dose distribution while the patient is still on couch and successfully addressing most of the sources of variability. Short conclusion Aim of this study is to present and discuss the state of the art, the main pitfalls and the innovative opportunities offered by online adaptive MRgRT in pancreatic cancer treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.