Klebsiella pneumoniae is a foremost gram-negative pathogen that can induce life-threatening nosocomial pulmonary infections. Although it can be phagocytosed successfully by lung resident macrophages, this pathogen remains viable within vacuolar compartments, resulting in chronic infection and limiting therapeutic treatment with antibiotics. In this study, we aimed to generate and evaluate a cell-penetrant antibiotic poly(lactide-co-glycolide) (PLGA)-based formulation that could successfully treat intracellular K. pneumoniae infection. Screening of formulation conditions allowed the generation of high drug loaded nanoparticles through a water-in-oil-in-water approach. We demonstrated the therapeutic usefulness of these gentamicin-loaded nanoparticles (GNPs), showing their ability to improve survival and provide extended prophylactic protection towards K. pneumoniae using a Galleria mellonella infection model. We subsequently showed that the GNPs could be phagocytosed by K. pneumoniae infected macrophages, and significantly reduce the viability of the intracellular bacteria without further stimulation of pro-inflammatory or pro-apoptotic effects on the macrophages. Taken together, these results clearly show the potential to use antibiotic loaded NPs to treat intracellular K. pneumoniae infection, reducing bacterial viability without concomitant stimulation of inflammatory or pyroptotic pathways in the treated cells.
BackgroundThe deubiquitinase USP17 is overexpressed in NSCLC and has been shown to be required for the growth and motility of EGFR wild-type (WT) NSCLC cells. USP17 is also required for clathrin-mediated endocytosis of EGFR. Here, we examine the impact of USP17 depletion on the growth, as well as EGFR endocytosis and signaling, of EGFR mutant (MT) NSCLC cells. In particular, we examine NSCLC cells harboring an EGFR activating exon 19 deletion (HCC827), or both the L858R activating mutation and the T790M resistance gatekeeper mutation (H1975) which renders them resistant to EGFR tyrosine kinase inhibitors (TKIs).MethodsMTT, trypan blue and clonogenic assays, confocal microscopy, Western blotting and cell cycle analysis were performed.ResultsUSP17 depletion blocks the growth of EGFRMT NSCLC cells carrying either the EGFR exon 19 deletion, or L858R/T790M double mutation. In contrast to EGFRWT cells, USP17 depletion also triggers apoptosis of EGFRMT NSCLC cells. USP17 is required for clathrin-mediated endocytosis in these EGFRMT NSCLC cells, but it is not required for the internalization of the mutated EGFR receptors. Instead, USP17 depletion alters the localization of these receptors within the cell, and although it does not decrease basal EGFR activation, it potently reduces activation of Src, a key kinase in mutant EGFR-dependent tumorigenicity. Finally, we demonstrate that USP17 depletion can trigger apoptosis in EGFRWT NSCLC cells, when combined with the EGFR tyrosine kinase inhibitor (TKI) gefitinib.ConclusionsOur data reveals that USP17 facilitates trafficking and oncogenic signaling of mutant EGFR and indicates targeting USP17 could represent a viable therapeutic strategy in NSCLC tumours carrying either an EGFR activating mutation, or a resistance gatekeeper mutation.
STUDY QUESTION How well can whole chromosome copy number analysis from a single trophectoderm (TE) biopsy predict true mosaicism configurations in human blastocysts? SUMMARY ANSWER When a single TE biopsy is tested, wide mosaicism thresholds (i.e. 20–80% of aneuploid cells) increase false positive calls compared to more stringent ones (i.e. 30–70% of aneuploid cells) without improving true detection rate, while binary classification (aneuploid/euploid) provides the highest diagnostic accuracy. WHAT IS KNOWN ALREADY Next-generation sequencing-based technologies for preimplantation genetic testing for aneuploidies (PGT-A) allow the identification of intermediate chromosome copy number alterations potentially associated with chromosomal mosaicism in TE biopsies. Most validation studies are based on models mimicking mosaicism, e.g. mixtures of cell lines, and cannot be applied to the clinical interpretation of TE biopsy specimens. STUDY DESIGN, SIZE, DURATION The accuracy of different mosaicism diagnostic thresholds was assessed by comparing chromosome copy numbers in multiple samples from each blastocyst. Enrolled embryos were donated for research between June 2019 and September 2020. The Institutional Review Board at the Near East University approved the study (project: YDU/2019/70-849). Embryos showing euploid/aneuploid mosaicism (n = 53), uniform chromosomal alterations (single or multiple) (n = 25), or uniform euploidy (n = 39) in their clinical TE biopsy were disaggregated into five portions: the inner cell mass (ICM) and four TE segments. Collectively, 585 samples from 117 embryos were analysed. PARTICIPANTS/MATERIALS, SETTING, METHODS Donated blastocysts were warmed, allowed to re-expand, and disaggregated in TE portions and ICM. PGT-A analysis was performed using Ion ReproSeq PGS kit and Ion S5 sequencer (ThermoFisher). Sequencing data were blindly analysed with Ion Reporter software to estimate raw chromosome copy numbers. Intra-blastocyst comparison of copy number data was performed employing different thresholds commonly used for mosaicism detection. From copy number data, different case scenarios were created using more stringent (30–70%) or less stringent criteria (20–80%). Categorical variables were compared using the two-sample z test for proportions. MAIN RESULTS AND THE ROLE OF CHANCE When all the five biopsies from the same embryo were analysed with 30–70% thresholds, only 8.4% (n = 14/166) of patterns abnormal in the original analysis revealed a true mosaic configuration, displaying evidence of reciprocal events (3.6%, n = 6/166) or confirmation in additional biopsies (4.8%, n = 8/166), while most mosaic results (87.3% of total predicted mosaic patterns) remained confined to a single TE specimen. Conversely, uniform whole chromosome aneuploidies (28.3% of total patterns, n = 47/166) were confirmed in all subsequent biopsies in 97.9% of cases (n = 46/47). When 20–80% thresholds were employed (instead of 30–70%), the overall mosaicism rate per biopsy increased from 20.2% (n = 114/565) to 40.2% (n = 227/565). However, the use of a wider threshold range did not contribute to the detection of additional true mosaic patterns, while significantly increasing false positive mosaic patterns from 57.8% to 79.5% (n = 96/166; 95% CI = 49.9–65.4 vs n = 271/341; 95% CI = 74.8–83.6, respectively) (P < 0.00001). Moreover, the shift of the aneuploid cut-off from 70% to 80% of aneuploid cells resulted in mosaicism overcalling in the high range (50–80% of aneuploid cells), impacting the accuracy of uniform aneuploid classification. Parametric analysis of thresholds, based on multifocal analysis, revealed that a binary classification scheme with a single cut-off at a 50% level provided the highest sensitivity and specificity rates. Further analysis on technical noise distribution at the chromosome level revealed a greater impact on smaller chromosomes. LIMITATIONS, REASONS FOR CAUTION While enrolment of a population enriched in embryos showing intermediate chromosome copy numbers enhanced the evaluation of the mosaicism category compared with random sampling such study population selection is likely to lead to an overall underestimation of PGT-A accuracy compared to a general assessment of unselected clinical samples. This approach involved the analysis of aneuploidy chromosome copy number thresholds at the embryo level; future studies will need to evaluate these criteria in relation to clinical predictive values following embryo transfers for different PGT-A assays. Moreover, the study lacked genotyping-based confirmation analysis. Finally, aneuploid embryos with known meiotic partial deletion/duplication were not included. WIDER IMPLICATIONS OF THE FINDINGS Current technologies can detect low-intermediate chromosome copy numbers in preimplantation embryos but their identification is poorly correlated with consistent propagation of the anomaly throughout the embryo or with negative clinical consequences when transferred. Therefore, when a single TE biopsy is analysed, diagnosis of chromosomal mosaicism should be evaluated carefully. Indeed, the use of wider mosaicism thresholds (i.e. 20–80%) should be avoided as it reduces the overall PGT-A diagnostic accuracy by increasing the risk of false positive mosaic classification and false negative aneuploid classification. From a clinical perspective, this approach has negative consequences for patients as it leads to the potential deselection of normal embryos for transfer. Moreover, a proportion of uniform aneuploid embryos may be inaccurately categorized as high-level mosaic, with a consequent negative outcome (i.e. miscarriage) when inadvertently selected for transfer. Clinical outcomes following PGT-A are maximized when a 50% threshold is employed as it offers the most accurate diagnostic approach. STUDY FUNDING/COMPETING INTEREST(S) The study was supported by Igenomix. The authors not employed by Igenomix have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER N/A.
The formulation of the novel activity-based probe CS1 in PEG-PLGA nanoparticles allows intracellular selective labelling of caspase-3 over closely related caspase-7.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.