Active thermal control will be a major challenge of the twenty-first century, which has emphasized the need for the development of energy-efficient refrigeration techniques such as electrocaloric (EC) cooling. Highly polar semi-crystalline VDF-based polymers are promising organic EC materials, however, their cooling performance, which is highly structurallydependent, needs further improvement to become competitive. Here, we report a simple method to increase the crystalline coherence of P(VDF-ter-TrFE-ter-CFE) ter-polymer in the plane including the polar direction. This is achieved by blending P(VDF-ter-TrFE-ter-CFE) with minute amounts of P(VDF-co-TrFE) co-polymer with similar VDF/TrFE unit content. This similarity allows for a cocrystallization of the co-polymer chains in the terpolymer crystalline lamellae, preferentially extending the lateral coherence without lamellar thickening, as validated with a wide range of structural characterisation. This results in a significant dielectric and electrocaloric enhancement, with a remarkable electrocaloric effect, ΔTEC = 5.2 K, confirmed by direct measurements for a moderate electric field of 90 MV•m -1 in a blend with 1 wt% of co-polymer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.