Purpose: We review augmented (AR) and virtual reality (VR) applications in radiotherapy as found in the scientific literature and highlight future developments enabled by the use of small mass-produced devices and portability of techniques developed in other fields to radiotherapy.Analysis: The application of AR and VR within radiotherapy is still in its infancy, with the notable exception of training and teaching applications. The relatively high cost of equipment needed to generate a realistic 3D effect seems one factor that has slowed down its use, but also the sheer amount of image data is relatively recent, were radiotherapy professionals are only beginning to explore how to use this to its full potential. This increased availability of 3D data in radiotherapy will drive the application of AR and VR in radiotherapy to efficiently recognise and extract key features in the data to act on in clinical decision making.
Conclusion:The development of small mass-produced tablet devices coming on the market will allow the user to interact with computer-generated information more easily, facilitating the application of AR and VR. The increased connectivity enabling virtual presence of remote multidisciplinary team meetings heralds significant changes to how radiotherapy professionals will work, to the benefit of our patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.