Brain changes within and beyond the visual system have been demonstrated in primary open angle glaucoma (POAG), the most common type of glaucoma. These changes have been often interpreted as a neurodegenerative process due, at least partially, to the raised intraocular pressure (IOP). In this context, normal tension glaucoma (NTG), a form of POAG with IOP <21 mm Hg despite the typical glaucomatous findings, represents the most suitable model of glaucoma to test the validity of this hypothesis. We acquired multimodal brain MRI in NTG patients (n 5 17) and compared them with demographically matched groups of POAG patients with raised IOP (n 5 17) and normal controls (NC, n 5 29). Voxelwise statistics was performed with nonparametric permutation testing. Both NTG and POAG patients showed, compared to NC, significantly more gray matter atrophy in both the visual system and in nonvisual brain regions and altered diffusion tensor imaging-derived anatomical connectivity (AC; lower fractional anisotropy and/or higher diffusivities). Compared with NTG, POAG had both more atrophic visual cortex and higher axial diffusivity in nonvisual regions. Functional connectivity (FC) with respect to NC was altered in NTG at short-range level [visual network (VN), ventral attention network] and in POAG at long-range level (between secondary VN and limbic network). FC of POAG was higher than NTG in both VN and executive network. This study provides further evidence that diffuse structural and functional abnormalities across glaucoma brain may be, at least partially, independent of raised IOP and the consequent retinal degeneration. This further defines glaucoma as a condition with neurodegeneration spreading. Hum Brain Mapp 39:532-541, 2018.V C 2017 Wiley Periodicals, Inc.
We hypothesized that assessment of brain connectivity may shed light on the underpinnings of ocular hypertension (OHT), characterized by raised intraocular pressure (IOP) and no typical glaucomatous findings. OHT carries a risk for future glaucoma development, thus representing a model of presymptomatic condition. In previous studies on glaucoma, we showed altered brain connectivity since the early stage and in case of normal IOP. In this pilot study, we used a multimodal MRI approach by modeling voxelwise measures of gray matter volume, anatomical connectivity along white matter(WM) tracts, and large-scale functional connectivity in OHT subjects (n = 18, age: 58.3 ± 9.8 years) and demographically matched normal controls (n = 29). While OHT brain had no structural alterations, it showed significantly decreased functional connectivity in key cognitive networks [default mode network, frontoparietal working memory network (WMN), ventral attention network (VAN), and salience network (SN)] and altered long-range functional connectivity, which was decreased between default mode and SNs and increased between primary and secondary visual networks (VN). Overall, such findings seem to delineate a complex neuroplasticity in the OHT brain, where decreased functional connectivity in non-visual networks may reflect a type of temporarily downregulated functional reserve while increased functional connectivity between VN may be viewed as a very early attempt of adaptive functional reorganization of the visual system.
Purpose: To assess the safety and efficacy of subthreshold micropulse laser (SML) photo-stimulation in the management of persistent subfoveal fluid (PSF) after surgery for rhegmatogenous retinal detachment (RRD). Methods: In this pilot study, 11 eyes of 11 patients (8 men, 3 women) with long-lasting (12–18 months) PSF after surgery for RRD were evaluated before and after photostimulation with subthreshold micropulse yellow laser. Ophthalmic examination included best-corrected visual acuity (BCVA), Amsler grid test, ophthalmoscopy, autofluorescence (AF), and optical coherence tomography (OCT) with measurement of central point foveal thickness (CPFT). Primary outcome was subfoveal fluid resolution and secondary outcome was BCVA improvement. Results: The mean CPFT and BCVA were, respectively, 436.8 ± 28.8 μm and 0.25 ± 0.1 μm decimal equivalent (DE) before photostimulation and 278 ± 54.4 μm and 0.57 ± 0.2 μm DE after photostimulation, a statistically significant difference (P < 0.001). Nine (81.8%) eyes showed improved BCVA, disappearance of macular detachment on ophthalmoscopy, reduced retinal pigment epithelium distress on AF, and restored macular profile with no neuroretinal alterations on OCT scans. Conclusion: Although PSF after RRD surgery is often a self-limiting disease, our results suggest that SML photostimulation may be effective and safe in patients with clinically significant long-lasting PSF. Larger case–control studies are necessary to confirm these results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.