Rocking movements appear to affect human sleep. Recent research suggested a facilitated transition from wake to sleep and a boosting of slow oscillations and sleep spindles due to lateral rocking movements during an afternoon nap. This study aimed at investigating the effect of vestibular stimulation on sleep onset, nocturnal sleep and its potential to increase sleep spindles and slow waves, which could influence memory performance. Polysomnography was recorded in 18 males (age: 20–28 years) during three nights: movement until sleep onset (C1), movement for 2 hours (C2), and one baseline (B) without motion. Sleep dependent changes in memory performance were assessed with a word-pair learning task. Although subjects preferred nights with vestibular stimulation, a facilitated sleep onset or a boost in slow oscillations was not observed. N2 sleep and the total number of sleep spindles increased during the 2 h with vestibular stimulation (C2) but not over the entire night. Memory performance increased over night but did not differ between conditions. The lack of an effect might be due to the already high sleep efficiency (96%) and sleep quality of our subjects during baseline. Nocturnal sleep in good sleepers might not benefit from the potential facilitating effects of vestibular stimulation.
Simulators are commonly used to train complex tasks. In particular, simulators are applied to train dangerous tasks, to save costs, and to investigate the impact of different factors on task performance. However, in most cases, the transfer of simulator training to the real task has not been investigated. Without a proof for successful skill transfer, simulators might not be helpful at all or even counter-productive for learning the real task. In this paper, the skill transfer of complex technical aspects trained on a scull rowing simulator to sculling on water was investigated. We assume if a simulator provides high fidelity rendering of the interactions with the environment even without augmented feedback, training on such a realistic simulator would allow similar skill gains as training in the real environment. These learned skills were expected to transfer to the real environment. Two groups of four recreational rowers participated. One group trained on water, the other group trained on a simulator. Within two weeks, both groups performed four training sessions with the same licensed rowing trainer. The development in performance was assessed by quantitative biomechanical performance measures and by a qualitative video evaluation of an independent, blinded trainer. In general, both groups could improve their performance on water. The used biomechanical measures seem to allow only a limited insight into the rowers' development, while the independent trainer could also rate the rowers' overall impression. The simulator quality and naturalism was confirmed by the participants in a questionnaire. In conclusion, realistic simulator training fostered skill gains to a similar extent as training in the real environment and enabled skill transfer to the real environment. In combination with augmented feedback, simulator training can be further exploited to foster motor learning even to a higher extent, which is subject to future work.
For centuries, rocking has been used to promote sleep in babies or toddlers. Recent research suggested that relaxation could play a role in facilitating the transition from waking to sleep during rocking. Breathing techniques are often used to promote relaxation. However, studies investigating head motions and body rotations showed that vestibular stimulation might elicit a vestibulo-respiratory response, leading to an increase in respiration frequency. An increase in respiration frequency would not be considered to promote relaxation in the first place. On the other hand, a coordination of respiration to rhythmic vestibular stimulation has been observed. Therefore, this study aimed to investigate the effect of different movement frequencies and amplitudes on respiration frequency. Furthermore, we tested whether subjects adapt their respiration to movement frequencies below their spontaneous respiration frequency at rest, which could be beneficial for relaxation. Twenty-one healthy subjects (24–42 years, 12 males) were investigated using an actuated bed, moving along a lateral translation. Following movement frequencies were applied: +30%, +15%, -15%, and -30% of subjects’ rest respiration frequency during baseline (no movement). Furthermore, two different movement amplitudes were tested (Amplitudes: 15 cm, 7.5 cm; movement frequency: 0.3 Hz). In addition, five subjects (25–28 years, 2 males) were stimulated with their individual rest respiration frequency. Rocking movements along a lateral translation caused a vestibulo-respiratory adaptation leading to an increase in respiration frequency. The increase was independent of the applied movement frequencies or amplitudes but did not occur when stimulating with subjects’ rest respiration frequency. Furthermore, no synchronization of the respiration frequency to the movement frequency was observed. In particular, subjects did not lower their respiration frequency below their resting frequency. Hence, it was not feasible to influence respiration in a manner that might be considered beneficial for relaxation.
Rocking movements are known to affect human sleep. Previous studies have demonstrated that the transition from wake to sleep can be facilitated by rocking movements, which might be related to relaxation. However, it is not yet known which movements would have the greatest effect. Thus, a 6-degree-of-freedom tendon-based robotic bed was developed, for systematic evaluation of vestibular stimuli. The applicability of the device was evaluated with 25 subjects. Six movement axes were tested and analyzed for differences in promoting relaxation. Relaxation was assessed by electroencephalogram, electrocardiogram, respiration and a questionnaire. The developed device fulfilled all needed requirements proving the applicability of this technology. Movements had no significant effects on the electroencephalogram and electrocardiogram. Respiration frequency was significantly lower for baseline measurements without movement (median 0.183-0.233 Hz) compared to movement conditions (median 0.283-0.300 Hz). Questionnaire ratings showed a trend (p = 0.057) toward higher relaxation for movements along the vertical axis (z-axis) (median 4.67; confidence interval 4.33-5.67) compared to the roll-axis (median 4.33; confidence interval 3.67-5.00). Movements along the vertical axis (z-axis), therefore, appear most promising in promoting relaxation, though no effects were found in electroencephalogram and electrocardiogram variables. This lack of effect might be attributed to the short exposure to the movements and the large inter-individual variability and individual preferences among subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.