Abstract:The aim of the presented study is to assess the impacts of climate change on hydropower production of the Toce Alpine river basin in Italy. For the meteorological forcing of future scenarios, time series were generated by applying a quantile-based error-correction approach to downscale simulations from two regional climate models to point scale. Beside a general temperature increase, climate models simulate an increase of mean annual precipitation distributed over spring, autumn and winter, and a significant decrease in summer. A model of the hydropower system was driven by discharge time series for future scenarios, simulated with a spatially distributed hydrological model, with the simulation goal of defining the reservoirs management rule that maximizes the economic value of the hydropower production. The assessment of hydropower production for future climate till 2050 respect to current climate (2001)(2002)(2003)(2004)(2005)(2006)(2007)(2008)(2009)(2010) showed an increase of production in autumn, winter and spring, and a reduction in June and July. Significant change in the reservoir management policy is expected due to anticipation of the date when the maximum volume of stored water has to be reached and an increase of the reservoir drawdown during August and September to prepare storage capacity for autumn inflows.
The effects induced on the climate by human activity have become a major issue for the new millennium. In order to arrive at sustainable conclusions it is necessary, first of all, to assess and quantify natural climatic changes. In general this is done by analysing available time series. In the case of historical hydrometeorological data sets, a comparative analysis with solar cycles is not usually conducted. This work, however, demonstrates that the effect of solar cycles observed at the Equator is also visible at middle and high latitudes with multiple periodicity of the basic solar frequency (roughly 11 years). This could well be due to the interaction between solar forcing and circulation mechanisms within the atmosphere, i.e. water-air-soil interactions coupled with anthropogenic forcing. This theory has been tested by comparing different types of historical data series with the River Po discharges and cyclic appearance of slime bloom in the Adriatic Sea.
This study proposes a climate service named Smart Climate Hydropower Tool (SCHT) and designed as a hybrid forecast system for supporting decision-making in a context of hydropower production. SCHT is technically designed to make use of information from state-of-art seasonal forecasts provided by the Copernicus Climate Data Store (CDS) combined with a range of different machine learning algorithms to perform the seasonal forecast of the accumulated inflow discharges to the reservoir of hydropower plants. The machine learning algorithms considered include support vector regression, Gaussian processes, long short-term memory, non-linear autoregressive neural networks with exogenous inputs, and a deep-learning neural networks model. Each machine learning model is trained over past decades datasets of recorded data, and forecast performances are validated and evaluated using separate test sets with reference to the historical average of discharge values and simpler multiparametric regressions. Final results are presented to the users through a user-friendly web interface developed from a tied connection with end-users in an effective co-design process. Methods are tested for forecasting the accumulated seasonal river discharges up to six months in advance for two catchments in Colombia, South America. Results indicate that the machine learning algorithms that make use of a complex and/or recurrent architecture can better simulate the temporal dynamic behaviour of the accumulated river discharge inflow to both case study reservoirs, thus rendering SCHT a useful tool in providing information for water resource managers in better planning the allocation of water resources for different users and for hydropower plant managers when negotiating power purchase contracts in competitive energy markets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.