Primary tumors are responsible for 10% of cancer deaths. In most cases, the main cause of mortality is the formation of metastases. Accumulating evidence suggests that a subpopulation of tumor cells with distinct stem-like properties is responsible for tumor initiation, invasive growth, and metastasis formation. This population is defined as cancer stem cells (CSCs). Existing therapies have enhanced the length of survival after diagnosis of cancer but have completely failed in terms of recovery. CSCs appear to be resistant to chemotherapy, may remain quiescent for extended periods, and have affinity for hypoxic environments. The CSCs can be identified and isolated by different methodologies, including isolation by CSC-specific cell surface marker expression, detection of side population phenotype by Hoechst 33342 exclusion, assessment of their ability to grow as floating spheres, and aldehyde dehydrogenase (ALDH) activity assay. None of the methods mentioned are exclusively used to isolate the solid tumor CSCs, highlighting the imperative to delineate more specific markers or to use combinatorial markers and methodologies. This review provides an overview of the main characteristics and approaches used to identify, isolate, and characterize CSCs from solid tumors.
BackgroundOsteosarcoma is the most common primary tumour of bone. Solid tumours are made of heterogeneous cell populations, which display different goals and roles in tumour economy. A rather small cell subset can hold or acquire stem potentials, gaining aggressiveness and increasing expectancy of recurrence. The CD133 antigen is a pentaspan membrane glycoprotein, which has been proposed as a cancer stem cell marker, since it has been previously demonstrated to be capable of identifying a cancer initiating subpopulation in brain, colon, melanoma and other solid tumours. Therefore, our aim was to observe the possible presence of cells expressing the CD133 antigen within solid tumour cell lines of osteosarcoma and, then, understand their biological characteristics and performances.Methodology and Principal FindingsIn this study, using SAOS2, MG63 and U2OS, three human sarcoma cell lines isolated from young Caucasian subjects, we were able to identify and characterize, among them, CD133+ cells showing the following features: high proliferation rate, cell cycle detection in a G2\M phase, positivity for Ki-67, and expression of ABCG2 transporters. In addition, at the FACS, we were able to observe the CD133+ cell fraction showing side population profile and forming sphere-clusters in serum-free medium with a high clonogenic efficiency.ConclusionsTaken together, our findings lead to the thought that we can assume that we have identified, for the first time, CD133+ cells within osteosarcoma cell lines, showing many features of cancer stem cells. This can be of rather interest in order to design new therapies against the bone cancer.
BackgroundHuman adult adipose tissue is an abundant source of mesenchymal stem cells (MSCs). Moreover, it is an easily accessible site producing a considerable amount of stem cells.Methodology/Principal FindingsIn this study, we have selected and characterized stem cells within the stromal vascular fraction (SVF) of human adult adipose tissue with the aim of understanding their differentiation capabilities and performance. We have found, within the SVF, different cell populations expressing MSC markers – including CD34, CD90, CD29, CD44, CD105, and CD117 – and endothelial-progenitor-cell markers – including CD34, CD90, CD44, and CD54. Interestingly, CD34+/CD90+ cells formed sphere clusters, when placed in non-adherent growth conditions. Moreover, they showed a high proliferative capability, a telomerase activity that was significantly higher than that found in differentiated cells, and contained a fraction of cells displaying the phenotype of a side population. When cultured in adipogenic medium, CD34+/CD90+ quickly differentiated into adipocytes. In addition, they differentiated into endothelial cells (CD31+/VEGF+/Flk-1+) and, when placed in methylcellulose, were capable of forming capillary-like structures producing a high level of VEGF, as substantiated with ELISA tests.Conclusions/SignificanceOur results demonstrate, for the first time, that CD34+/CD90+ cells of human adipose tissue are capable of forming sphere clusters, when grown in free-floating conditions, and differentiate in endothelial cells that form capillary-like structures in methylcellulose. These cells might be suitable for tissue reconstruction in regenerative medicine, especially when patients need treatments for vascular disease.
In this study, we have observed dental pulp stem cells (SBP-DPSCs) performances on different scaffolds, such as PLGA 85:15, hydroxyapatite chips (HA) and titanium. Stem cells were challenged with each engineered surface, either in plane cultures or in a rotating apparatus, for a month. Gingival fibroblasts were used as controls. Results showed that stem cells exerted a different response, depending on the different type of textured surface: in fact, microconcavities significantly affected SBP-DPSC differentiation into osteoblasts, both temporally and quantitatively, with respect to the other textured surfaces. Actually, stem cells challenged with concave surfaces differentiated quicker and showed nuclear polarity, an index of secretion, cellular activity and matrix formation. Moreover, bone-specific proteins were significantly expressed and the obtained bone tissue was of significant thickness. Thus, cells cultured on the concave textured surface had better cell-scaffold interactions and were induced to secrete factors that, due to their autocrine effects, quickly lead to osteodifferentiation, bone tissue formation, and vascularization. The worst cell performance was obtained using convex surfaces, due to the scarce cell proliferation on to the scaffold and the poor matrix secretion. In conclusion, this study stresses that for a suitable and successful bone tissue reconstruction the surface texture is of paramount importance.
Stem cell-based therapies for repair and regeneration of different tissues are becoming more important in the treatment of several diseases. Adult stem cells currently symbolize the most available source of cell progenitors for tissue engineering and repair and can be harvested using minimally invasive procedures. Moreover, mesenchymal stem cells (MSCs), the most widely used stem cells in stem cell-based therapies, are multipotent progenitors, with capability to differentiate into cartilage, bone, connective, muscle, and adipose tissue. So far, bone marrow has been regarded as the main source of MSCs. To date, human adult adipose tissue may be the best suitable alternative source of MSCs. Adipose stem cells (ASCs) can be largely extracted from subcutaneous human adult adipose tissue. A large number of studies show that adipose tissue contains a biologically and clinically interesting heterogeneous cell population called stromal vascular fraction (SVF). The SVF may be employed directly or cultured for selection and expansion of an adherent population, so called adipose-derived stem cells (ASCs). In recent years, literature based on data related to SVF cells and ASCs has augmented considerably: These studies have demonstrated the efficacy and safety of SVF cells and ASCs in vivo in animal models. On the basis of these observations, in several countries, various clinical trials involving SVF cells and ASCs have been permitted. This review aims at summarizing data regarding either ASCs cellular biology or ASCs-based clinical trials and at discussing the possible future clinical translation of ASCs and their potentiality in cell-based tissue engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.