Little is known about the effect of tidal changes on minor flooding in most lagoonal estuaries, often due to a paucity of historical records that predate landscape changes. In this contribution, we recover and apply archival tidal range data to show that the mean tidal range in Miami, Florida, has almost doubled since 1900, from 0.32 to 0.61 m today. A likely cause is the dredging of a ∼15 m deep, 150 m wide harbor entrance channel beginning in the early 20th century, which changed northern Biscayne Bay from a choked inlet system to one with a tidal range close to coastal conditions. To investigate the implications for high‐tide flooding, we develop and validate a tidal‐inference based methodology that leverages estimates of pre‐1900 tidal range to obtain historical tidal predictions and constituents. Next, water level predictions that represent historical and modern water level variations are projected forward in time using different sea level rise scenarios. Results show that the historical increase in tidal range hastened the occurrence of present‐day flooding, and that the total integrated number of days with high‐tide floods in the 2020–2100 period will be approximately O(103) more under present day tides compared to pre‐development conditions. These results suggest that tidal change may be a previously under‐appreciated factor in the increasing prevalence of high‐tide flooding in lagoonal estuaries, and our methods open the door to improving our understanding of other heavily‐altered systems.
Wind-generated ocean waves are key inputs for several studies and applications, both near the coast (coastal vulnerability assessment, coastal structures design, harbor operativity) and off-shore (a.o. oil and gas production, ship routes, and navigation safety). As such, the evaluation of trends in future wave climate is fundamental for the development of efficient policies in the framework of climate change adaptation and mitigation measures. This study focuses on the Mediterranean Sea, an area of primary interest, since it plays a crucial role in the worldwide maritime transport and it is highly populated along all its coasts. We perform an analysis of wave climate changes using an ensemble of 7 models under emission scenario RCP8.5, over the entire Mediterranean basin. Future projections of wave climate and their variability are analyzed taking into account annual statistics of wave parameters, such as significant wave height, mean period, and mean direction. The results show, on average, a decreasing trend of significant wave height and mean period, while the wave directions may be characterized by a slight eastward shift.
Plastic pollution in seas and oceans has recently been recognized as one of the most impacting threats for the environment, and the increasing number of scientific studies proves that this is an issue of primary concern. Being able to predict plastic paths and concentrations within the sea is therefore fundamental to properly face this challenge. In the present work, we evaluated the effects of sea waves on inertial micro-plastics dynamics. We hypothesized a stationary input number of particles in a given control volume below the sea surface, solving their trajectories and distributions under a second-order regular wave. We developed an exhaustive group of datasets, spanning the most plausible values for particles densities and diameters and wave characteristics, with a specific focus on the Mediterranean Sea. Results show how the particles inertia significantly affects the total transport of such debris by waves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.