We study the statics of some trusses, i.e. networks of nodes linked by linear springs. The trusses are designed in such a way that a few number of floppy modes are present and remain when considering the homogenized limit of the truss. We then obtain linear elastic materials with exotic mechanical interactions which cannot be described in the classical framework of Cauchy stress theory. For aim of simplicity, the structures described here are two-dimensional. The extension to the 3D case does not present any difficulty.
In the present paper we study a natural nonlinear generalization of Timoshenko beam model and show that it can describe the homogenized deformation energy of a 1D continuum with a simple microstructure. We prove the well-posedness of the corresponding variational problem in case of a generic end load, discuss some regularity issues and evaluate the critical load. Moreover, we generalize the model so as to include an additional rotational spring in the microstructure. Finally, some numerical simulations are presented and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.