Many of the behavioral consequences of stress are mediated by the activation of the glucocorticoid receptor by stress-induced high levels of glucocorticoid hormones. To explore the molecular mechanisms of these effects, we combined in vivo and in vitro approaches. We analyzed mice carrying a brain-specific mutation (GR(NesCre)) in the glucocorticoid receptor gene (GR, also called Nr3c1) and cell lines that either express endogenous glucocorticoid receptor or carry a constitutively active form of the receptor (DeltaGR) that can be transiently induced. In the hippocampus of the wild-type [corrected] mice after stress, as well as in the cell lines, activation of glucocorticoid receptors greatly increased the expression and enzymatic activity of proteins in the MAPK signaling pathway and led to an increase in the levels of both Egr-1 mRNA and protein. In parallel, inhibition of the MAPK pathway within the hippocampus abolished the increase in contextual fear conditioning induced by glucocorticoids. The present results provide a molecular mechanism for the stress-related effects of glucocorticoids on fear memories.
Compulsive drug-seeking behavior and its renewal in former drug addicts is promoted by several situations, among which reactivation of drug withdrawal memories plays a crucial role. A neural hypothesis is that such memories reactivate the circuits involved in withdrawal itself and promote a motivational state leading to drug seeking or taking. To test this hypothesis, we have analyzed the neural circuits and cell populations recruited when opiate-dependent rats are reexposed to stimuli previously paired with withdrawal (memory retrieval) and compared them with those underlying acute withdrawal during conditioning (memory formation). Using in situ hybridization for c-fos expression, we report here that reexposure to a withdrawal-paired environment induced conditioned c-fos responses in a specific limbic circuit, which can be partially dissociated from the structures involved in acute withdrawal. At the amygdala level, c-fos responses were doubly dissociated between the central and basolateral (BLA) nuclei, when comparing the two situations. Detailed phenotypical analyses in the amygdala and ventral tegmental area (VTA) show that specific subpopulations in the BLA are differentially involved in the formation and retrieval of withdrawal memories, and strikingly that a population of VTA dopamine neurons is activated in both situations. Together, this indicates that withdrawal memories can drive activity changes in specific neuronal populations of interconnected limbic areas known to be involved in aversive motivational processes. This first study on the neural substrates of withdrawal memories strongly supports an incentive-motivational view of withdrawal in opiate addiction that could be crucial in compulsive drug seeking and relapse.
Glucocorticoid receptors (GRs) are transcription factors that, upon activation by glucocorticoids, translocate to the cell nucleus, and bind to specific response elements (GREs) in the promoter region of target genes. We analysed stress- and circadian-induced changes in nuclear translocation and GRE binding of GRs in the hippocampus and the prefrontal cortex of the rat brain. Nuclear translocation and binding to GRE were measured in nuclear extracts by Western blot and gel shift, respectively. When glucocorticoid levels were low, as during the light period of the circadian cycle, nuclear GRs and GRE binding were almost undetectable. However, the increase in glucocorticoid levels observed during the dark phase of the circadian cycle or after stress induced a massive nuclear translocation of GRs and GRE binding. These effects were corticosterone-dependent because they were suppressed by adrenalectomy and restored by the injection of corticosterone. Furthermore, GR translocation and GRE binding were of higher amplitude or lasted longer in the hippocampus than in the prefrontal cortex. By contrast, extracellular levels of glucocorticoids, measured by microdialysis in freely moving animals, were identical in the two structures. These results suggest that specific intracellular regulations of GR activity contribute to differentiate the effects of glucocorticoids in different regions of the brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.