BackgroundA multidisciplinary and multi-institutional working group applied the Failure Mode and Effects Analysis (FMEA) approach to the actively scanned proton beam radiotherapy process implemented at CNAO (Centro Nazionale di Adroterapia Oncologica), aiming at preventing accidental exposures to the patient.MethodsFMEA was applied to the treatment planning stage and consisted of three steps: i) identification of the involved sub-processes; ii) identification and ranking of the potential failure modes, together with their causes and effects, using the risk probability number (RPN) scoring system, iii) identification of additional safety measures to be proposed for process quality and safety improvement. RPN upper threshold for little concern of risk was set at 125.ResultsThirty-four sub-processes were identified, twenty-two of them were judged to be potentially prone to one or more failure modes. A total of forty-four failure modes were recognized, 52% of them characterized by an RPN score equal to 80 or higher. The threshold of 125 for RPN was exceeded in five cases only. The most critical sub-process appeared related to the delineation and correction of artefacts in planning CT data. Failures associated to that sub-process were inaccurate delineation of the artefacts and incorrect proton stopping power assignment to body regions. Other significant failure modes consisted of an outdated representation of the patient anatomy, an improper selection of beam direction and of the physical beam model or dose calculation grid. The main effects of these failures were represented by wrong dose distribution (i.e. deviating from the planned one) delivered to the patient. Additional strategies for risk mitigation, easily and immediately applicable, consisted of a systematic information collection about any known implanted prosthesis directly from each patient and enforcing a short interval time between CT scan and treatment start. Moreover, (i) the investigation of dedicated CT image reconstruction algorithms, (ii) further evaluation of treatment plan robustness and (iii) implementation of independent methods for dose calculation (such as Monte Carlo simulations) may represent novel solutions to increase patient safety.ConclusionsFMEA is a useful tool for prospective evaluation of patient safety in proton beam radiotherapy. The application of this method to the treatment planning stage lead to identify strategies for risk mitigation in addition to the safety measures already adopted in clinical practice.
Background and purpose: Recurrent nasopharyngeal carcinoma (NPC) has limited curative treatment options. Reirradiation is the only potential definitive treatment in advanced stages at a cost of substantial severe and often life-threatening toxicity. Proton therapy (PT) reduces irradiated volume compared with X-ray radiotherapy and could be advantageous in terms of safety and efficacy in a population of heavily pretreated patients. We report the retrospective results of PT reirradiation in recurrent NPC patients treated at our Institution Methods: All recurrent NPC patients treated since the beginning of clinical activity entered the present analysis. Clinical target volume consisted of Gross Tumor volume plus a patient-specific margin depending on disease behavior, tumor location, proximity of organs at risk, previous radiation dose. No elective nodal irradiation was performed. Active scanning technique with the use of Single Field Optimization (SFO) or Multifield Optimization (MFO) was adopted. Cumulative X-ray-PT doses were calculated for all patients using a dose accumulation tool since 2016. Treatment toxicity was retrospectively collected. Results: Between February 2015, and October 2018, 17 recurrent NPC patients were treated. Median follow-up (FUP) was 10 months (range 2-41). Median PT reirradiation dose was 60 Gy RBE (range 30.6-66). The majority of patients (53%) underwent concomitant chemotherapy. Acute toxicity was low with no ! G3 adverse events. Late events ! G3 occurred in 23.5% of patients. Most frequent late toxicity was hearing impairment (17,6%). G2 soft tissue necrosis occurred in two patients. Fatal bleeding of uncertain cause (either tumor recurrence or G5 carotid blowout) occurred in one patient. Kaplan-Meier 18 months Overall Survival (OS) and Local control (LC) rates were 54.4% and 66.6%, respectively. Conclusions: Our initial results with the use of modern PT for reirradiation of recurrent NPC patients are encouraging. Favorable LC and OS rates were obtained at the cost of acceptable severe late toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.