In this paper we compared taxonomic results obtained by metataxonomics (16S rRNA gene sequencing) and metagenomics (whole shotgun metagenomic sequencing) to investigate their reliability for bacteria profiling, studying the chicken gut as a model system. The experimental conditions included two compartments of gastrointestinal tracts and two sampling times. We compared the relative abundance distributions obtained with the two sequencing strategies and then tested their capability to distinguish the experimental conditions. The results showed that 16S rRNA gene sequencing detects only part of the gut microbiota community revealed by shotgun sequencing. Specifically, when a sufficient number of reads is available, Shotgun sequencing has more power to identify less abundant taxa than 16S sequencing. Finally, we showed that the less abundant genera detected only by shotgun sequencing are biologically meaningful, being able to discriminate between the experimental conditions as much as the more abundant genera detected by both sequencing strategies.
While the SARS-CoV-2 pandemic continues to strike and collect its death toll throughout the globe, as of 31 January 2021, the vaccine candidates worldwide were 292, of which 70 were in clinical testing. Several vaccines have been approved worldwide, and in particular, three have been so far authorized for use in the EU. Vaccination can be, in fact, an efficient way to mitigate the devastating effect of the pandemic and offer protection to some vulnerable strata of the population (i.e., the elderly) and reduce the social and economic burden of the current crisis. Regardless, a question is still open: after vaccination availability for the public, will vaccination campaigns be effective in reaching all the strata and a sufficient number of people in order to guarantee herd immunity? In other words: after we have it, will we be able to use it? Following the trends in vaccine hesitancy in recent years, there is a growing distrust of COVID-19 vaccinations. In addition, the online context and competition between pro- and anti-vaxxers show a trend in which anti-vaccination movements tend to capture the attention of those who are hesitant. Describing this context and analyzing its possible causes, what interventions or strategies could be effective to reduce COVID-19 vaccine hesitancy? Will social media trend analysis be helpful in trying to solve this complex issue? Are there perspectives for an efficient implementation of COVID-19 vaccination coverage as well as for all the other vaccinations?
COVID-19 represents the most severe global crisis to date whose public conversation can be studied in real time. To do so, we use a data set of over 350 million tweets and retweets posted by over 26 million English speaking Twitter users from January 13 to June 7, 2020. We characterize the retweet network to identify spontaneous clustering of users and the evolution of their interaction over time in relation to the pandemic’s emergence. We identify several stable clusters (super-communities), and are able to link them to international groups mainly involved in science and health topics, national elites, and political actors. The science- and health-related super-community received disproportionate attention early on during the pandemic, and was leading the discussion at the time. However, as the pandemic unfolded, the attention shifted towards both national elites and political actors, paralleled by the introduction of country-specific containment measures and the growing politicization of the debate. Scientific super-community remained present in the discussion, but experienced less reach and became more isolated within the network. Overall, the emerging network communities are characterized by an increased self-amplification and polarization. This makes it generally harder for information from international health organizations or scientific authorities to directly reach a broad audience through Twitter for prolonged time. These results may have implications for information dissemination along the unfolding of long-term events like epidemic diseases on a world-wide scale.
IntroductionOnline social media have been both a field of research and a source of data for research since the beginning of the COVID-19 pandemic. In this study, we aimed to determine how and whether the content of tweets by Twitter users reporting SARS-CoV-2 infections changed over time.MethodsWe built a regular expression to detect users reporting being infected, and we applied several Natural Language Processing methods to assess the emotions, topics, and self-reports of symptoms present in the timelines of the users.ResultsTwelve thousand one hundred and twenty-one twitter users matched the regular expression and were considered in the study. We found that the proportions of health-related, symptom-containing, and emotionally non-neutral tweets increased after users had reported their SARS-CoV-2 infection on Twitter. Our results also show that the number of weeks accounting for the increased proportion of symptoms was consistent with the duration of the symptoms in clinically confirmed COVID-19 cases. Furthermore, we observed a high temporal correlation between self-reports of SARS-CoV-2 infection and officially reported cases of the disease in the largest English-speaking countries.DiscussionThis study confirms that automated methods can be used to find digital users publicly sharing information about their health status on social media, and that the associated data analysis may supplement clinical assessments made in the early phases of the spread of emerging diseases. Such automated methods may prove particularly useful for newly emerging health conditions that are not rapidly captured in the traditional health systems, such as the long term sequalae of SARS-CoV-2 infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.