Key pointsr We propose and validate a method for accurately identifying the activity of populations of motor neurons during contractions at maximal rate of force development in humans.r The behaviour of the motor neuron pool during rapid voluntary contractions in humans is presented.r We show with this approach that the motor neuron recruitment speed and maximal motor unit discharge rate largely explains the individual ability in generating rapid force contractions.r The results also indicate that the synaptic inputs received by the motor neurons before force is generated dictate human potential to generate force rapidly.r This is the first characterization of the discharge behaviour of a representative sample of human motor neurons during rapid contractions.Abstract During rapid contractions, motor neurons are recruited in a short burst and begin to discharge at high frequencies (up to >200 Hz). In the present study, we investigated the behaviour of relatively large populations of motor neurons during rapid (explosive) contractions in humans, applying a new approach to accurately identify motor neuron activity simultaneous to measuring the rate of force development. The activity of spinal motor neurons was assessed by high-density electromyographic decomposition from the tibialis anterior muscle of 20 men during isometric explosive contractions. The speed of motor neuron recruitment and the instantaneous motor unit discharge rate were analysed as a function of the impulse (the time-force integral) and the maximal rate of force development. The peak of motor unit discharge rate occurred before force Alessandro Del Vecchio is a research associate at the Department of Bioengineering, Imperial College London. He started his studies at the University of Parma with a degree in Human Movement Sciences and an MSc in Exercise Physiology from Loughborough University. Successively, he obtained a PhD from the University of Rome 'Foro Italico' focusing on the neural control of muscles. He is interested in the organization of neural networks determining movement and how to improve these networks in healthy and pathological conditions with the use of neurotechnology. Most of his work is based on recordings of motor unit activity during voluntary contractions.A. Del Vecchio and others J Physiol 597.9 generation and discharge rates decreased thereafter. The maximal motor unit discharge rate was associated with the explosive force variables, at the whole population level (r 2 = 0.71 ± 0.12; P < 0.001). Moreover, the peak motor unit discharge and maximal rate of force variables were correlated with an estimate of the supraspinal drive, which was measured as the speed of motor unit recruitment before the generation of afferent feedback (P < 0.05). We show for the first time the full association between the effective neural drive to the muscle and human maximal rate of force development. The results obtained in the present study indicate that the variability in the maximal contractile explosive force of the human tibialis anterior m...
Key points Previous studies have indicated that several weeks of strength training is sufficient to elicit significant adaptations in the neural drive sent to the muscles. There are few data, however, on the changes elicited by strength training in the recruitment and rate coding of motor units during voluntary contractions. We show for the first time that the discharge characteristics of motor units in the tibialis anterior muscle tracked across the intervention are changed by 4 weeks of strength training with isometric voluntary contractions. The specific adaptations included significant increases in motor unit discharge rate, decreases in the recruitment‐threshold force of motor units and a similar input–output gain of the motor neurons. The findings suggest that the adaptations in motor unit function may be attributable to changes in synaptic input to the motor neuron pool or to adaptations in intrinsic motor neuron properties. Abstract The strength of a muscle typically begins to increase after only a few sessions of strength training. This increase is usually attributed to changes in the neural drive to muscle as a result of adaptations at the cortical or spinal level. We investigated the change in the discharge characteristics of large populations of longitudinally tracked motor units in tibialis anterior before and after 4 weeks of strength training the ankle‐dorsiflexor muscles with isometric contractions. The adaptations exhibited by 14 individuals were compared with 14 control subjects. High‐density electromyogram grids with 128 electrodes recorded the myoelectric activity during isometric ramp contractions to the target forces of 35%, 50% and 70% of maximal voluntary force. The motor unit recruitment and derecruitment thresholds, discharge rate, interspike intervals and estimates of synaptic inputs to motor neurons were assessed. The normalized recruitment‐threshold forces of the motor units were decreased after strength training (P < 0.05). Moreover, discharge rate increased by 3.3 ± 2.5 pps (average across subjects and motor units) during the plateau phase of the submaximal isometric contractions (P < 0.001). Discharge rates at recruitment and derecruitment were not modified by training (P < 0.05). The association between force and motor unit discharge rate during the ramp‐phase of the contractions was also not altered by training (P < 0.05). These results demonstrate for the first time that the increase in muscle force after 4 weeks of strength training is the result of an increase in motor neuron output from the spinal cord to the muscle.
Link to publication on Research at Birmingham portal General rightsUnless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.• Users may freely distribute the URL that is used to identify this publication.• Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.• User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) • Users may not further distribute the material nor use it for the purposes of commercial gain.Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.When citing, please reference the published version. Take down policyWhile the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
Gizzi L, Nielsen JF, Felici F, Ivanenko YP, Farina D. Impulses of activation but not motor modules are preserved in the locomotion of subacute stroke patients. J Neurophysiol 106: 202-210, 2011. First published April 20, 2011 doi:10.1152/jn.00727.2010.-It has been hypothesized that the coordinated activation of muscles is controlled by the central nervous system by means of a small alphabet of control signals (also referred to as activation signals) and motor modules (synergies). We analyzed the locomotion of 10 patients recently affected by stroke (maximum of 20 wk) and compared it with that of healthy controls. The aim was to assess whether the walking of subacute stroke patients is based on the same motor modules and/or activation signals as healthy subjects. The activity of muscles of the lower and upper limb and the trunk was measured and used for extracting motor modules. Four modules were sufficient to explain the majority of variance in muscle activation in both controls and patients. Modules from the affected side of stroke patients were different from those of healthy controls and from the unaffected side of stroke patients. However, the activation signals were similar between groups and between the affected and unaffected side of stroke patients, and were characterized by impulses at specific time instants within the gait cycle, underlying an impulsive controller of gait. In conclusion, motor modules observed in healthy subjects during locomotion are different from those used by subacute stroke patients, despite similar impulsive activation signals. We suggest that this pattern is consistent with a neuronal network in which the timing of activity generated by central pattern generators is directed to the motoneurons via a premotor network that distributes the activity in a task-dependent manner determined by sensory and descending control information. stroke; gait; motor control THE PLANNING AND EXECUTION of movements implies a considerable computational load by the central nervous system (CNS). This complexity may be reduced by the activation of motor modules (also referred to as loadings or muscle synergies) in the spinal cord by means of a small number of activation signals (also referred to as factors or primitives or activation coefficients). This hypothesis has been confirmed in animal and human studies during a variety of tasks (Bizzi et al.
. Nonlinear surface EMG analysis to detect changes of motor unit conduction velocity and synchronization. J Appl Physiol 93: 1753-1763. First published August 9, 2002 10.1152/japplphysiol.00314.2002Amplitude and frequency content of the surface electromyographic (EMG) signal reflect central and peripheral modifications of the neuromuscular system. Classic surface EMG spectral variables applied to assess muscle functions are the centroid and median power spectral frequencies. More recently, nonlinear tools have been introduced to analyze the surface EMG; among them, the recurrence quantification analysis (RQA) was shown to be particularly promising for the detection of muscle status changes. The purpose of this work was to analyze the effect of motor unit short-term synchronization and conduction velocity (CV) on EMG spectral variables and two variables extracted by RQA, the percentage of recurrence (%Rec) and determinism (%Det). The study was performed on the basis of a simulation model, which allowed changing the degree of synchronization and mean CV of a number of motor units, and of an experimental investigation of the surface EMG signal properties detected during high-force-level isometric fatiguing contractions of the biceps brachii muscle. Simulations and experimental results were largely in agreement and show that 1) spectral variables, %Rec, and %Det are influenced by CV and degree of synchronization; 2) spectral variables are highly correlated with %Det (R ϭ Ϫ0.95 in the simulations and Ϫ0.78 and Ϫ0.75 for the initial values and normalized slopes, respectively, in the experimental signals), and thus the information they provide on muscle properties is basically the same; and 3) variations of %Det and %Rec in response to changes in muscle properties are significantly larger than the variations of spectral variables. This study validates RQA as a means for fatigue assessment with potential advantages (such as the higher sensitivity to changes of muscle status) with respect to the classic spectral analysis. surface electromyography; motor unit short-term synchronization; surface electromyographic modeling; recurrence plot analysis THE SURFACE ELECTROMYOGRAPHIC (EMG) signal presents smaller bandwidth with respect to the intramuscular EMG, because the tissues separating the muscle fibers and the recording electrodes act as low-pass filters (15,28). This determines low-spatial selectivity, which hinders the separation of the contributions of different motor units (MUs). For this reason, past research efforts in the surface EMG field were mainly devoted to the development of processing techniques in time and frequency domain, which gave indications about the global EMG activity, without aiming at an analysis at the single MU level. Although, recently, techniques for noninvasive assessment of single MU properties have been proposed and refined (4,6,8), their applicability is still limited by the need of complex detection systems, to low-contraction levels, and controlled laboratory conditions for signal recordi...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.