The combination of vinorelbine plus gemcitabine is not more effective than single-agent vinorelbine or gemcitabine in the treatment of elderly patients with advanced NSCLC.
Summary
Background
Phaeochromocytomas and paragangliomas are neuro-endocrine tumours that occur sporadically and in several hereditary tumour syndromes, including the phaeochromocytoma–paraganglioma syndrome. This syndrome is caused by germline mutations in succinate dehydrogenase B (SDHB), C (SDHC), or D (SDHD) genes. Clinically, the phaeochromocytoma–paraganglioma syndrome is often unrecognised, although 10–30% of apparently sporadic phaeochromocytomas and paragangliomas harbour germline SDH-gene mutations. Despite these figures, the screening of phaeochromocytomas and paragangliomas for mutations in the SDH genes to detect phaeochromocytoma–paraganglioma syndrome is rarely done because of time and financial constraints. We investigated whether SDHB immunohistochemistry could effectively discriminate between SDH-related and non-SDH-related phaeochromocytomas and paragangliomas in large retrospective and prospective tumour series.
Methods
Immunohistochemistry for SDHB was done on 220 tumours. Two retrospective series of 175 phaeochromocytomas and paragangliomas with known germline mutation status for phaeochromocytoma-susceptibility or paraganglioma-susceptibility genes were investigated. Additionally, a prospective series of 45 phaeochromocytomas and paragangliomas was investigated for SDHB immunostaining followed by SDHB, SDHC, and SDHD mutation testing.
Findings
SDHB protein expression was absent in all 102 phaeochromocytomas and paragangliomas with an SDHB, SDHC, or SDHD mutation, but was present in all 65 paraganglionic tumours related to multiple endocrine neoplasia type 2, von Hippel–Lindau disease, and neurofibromatosis type 1. 47 (89%) of the 53 phaeochromocytomas and paragangliomas with no syndromic germline mutation showed SDHB expression. The sensitivity and specificity of the SDHB immunohistochemistry to detect the presence of an SDH mutation in the prospective series were 100% (95% CI 87–100) and 84% (60–97), respectively.
Interpretation
Phaeochromocytoma–paraganglioma syndrome can be diagnosed reliably by an immunohistochemical procedure. SDHB, SDHC, and SDHD germline mutation testing is indicated only in patients with SDHB-negative tumours. SDHB immunohistochemistry on phaeochromocytomas and paragangliomas could improve the diagnosis of phaeochromocytoma–paraganglioma syndrome.
Background: In the phase III IMpassion130 trial, combining atezolizumab with first-line nanoparticle albumin-boundpaclitaxel for advanced triple-negative breast cancer (aTNBC) showed a statistically significant progression-free survival (PFS) benefit in the intention-to-treat (ITT) and programmed death-ligand 1 (PD-L1)-positive populations, and a clinically meaningful overall survival (OS) effect in PD-L1-positive aTNBC. The phase III KEYNOTE-355 trial adding pembrolizumab to chemotherapy for aTNBC showed similar PFS effects. IMpassion131 evaluated first-line atezolizumabepaclitaxel in aTNBC. Patients and methods: Eligible patients [no prior systemic therapy or 12 months since (neo)adjuvant chemotherapy] were randomised 2:1 to atezolizumab 840 mg or placebo (days 1, 15), both with paclitaxel 90 mg/m 2 (days 1, 8, 15), every 28 days until disease progression or unacceptable toxicity. Stratification factors were tumour PD-L1 status, prior taxane, liver metastases and geographical region. The primary endpoint was investigator-assessed PFS, tested hierarchically first in the PD-L1-positive [immune cell expression 1%, VENTANA PD-L1 (SP142) assay] population, and then in the ITT population. OS was a secondary endpoint. Results: Of 651 randomised patients, 45% had PD-L1-positive aTNBC. At the primary PFS analysis, adding atezolizumab to paclitaxel did not improve investigator-assessed PFS in the PD-L1-positive population [hazard ratio (HR) 0.82, 95% confidence interval (CI) 0.60-1.12; P ¼ 0.20; median PFS 6.0 months with atezolizumabepaclitaxel versus 5.7 months with placeboepaclitaxel]. In the PD-L1-positive population, atezolizumabepaclitaxel was associated with more favourable unconfirmed best overall response rate (63% versus 55% with placeboepaclitaxel) and median duration of response (7.2 versus 5.5 months, respectively). Final OS results showed no difference between arms (HR 1.11, 95% CI 0.76-1.64; median 22.1 months with atezolizumabepaclitaxel versus 28.3 months with placeboe paclitaxel in the PD-L1-positive population). Results in the ITT population were consistent with the PD-L1-positive population. The safety profile was consistent with known effects of each study drug. Conclusion: Combining atezolizumab with paclitaxel did not improve PFS or OS versus paclitaxel alone. ClinicalTrials.gov: NCT03125902.
Pretreatment global QoL and IADL scores, but not ADL and comorbidity, have significant prognostic value for survival of elderly patients with advanced non-small-cell lung cancer who were treated with chemotherapy. Using these scores in clinical practice might improve prognostic prediction for treatment planning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.