The discovery of evolving communities in dynamic networks is an important research topic that poses challenging tasks. Evolutionary clustering is a recent framework for clustering dynamic networks that introduces the concept of temporal smoothness inside the community structure detection method. Evolutionary-based clustering approaches try to maximize cluster accuracy with respect to incoming data of the current time step, and minimize clustering drift from one time step to the successive one. In order to optimize both these two competing objectives, an input parameter that controls the preference degree of a user towards either the snapshot quality or the temporal quality is needed. In this paper the detection of communities with temporal smoothness is formulated as a multiobjective problem and a method based on genetic algorithms is proposed. The main advantage of the algorithm is that it automatically provides a solution representing the best trade-off between the accuracy of the clustering obtained, and the deviation from one time step to the successive. Experiments on synthetic data sets show the very good performance of the method when compared with state-of-the-art approaches.
Abstract. Discovering predictive models for run-time support is an emerging topic in Process Mining research, which can effectively help optimize business process enactments. However, making accurate estimates is not easy especially when considering fine-grain performance measures (e.g., processing times) on a complex and flexible business process, where performance patterns change over time, depending on both case properties and context factors (e.g., seasonality, workload). We try to face such a situation by using an ad-hoc predictive clustering approach, where different context-related execution scenarios are discovered and modeled accurately via distinct state-aware performance predictors. A readable predictive model is obtained eventually, which can make performance forecasts for any new running process case, by using the predictor of the cluster it is estimated to belong to. The approach was implemented in a system prototype, and validated on a real-life context. Test results confirmed the scalability of the approach, and its efficacy in predicting processing times and associated SLA violations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.