The geographic variability of the dorsal pattern (DP) of the Italian wall lizard, Podarcis siculus, across its native range was studied with the aim of understanding whether the distributions of this phenotypic trait were more shaped by allopatric differentiation rather than adaptive processes. A total of 1298 georeferenced observations scattered across the Italian peninsula and the main islands (Sicily, Corsica and Sardinia) were obtained from citizen science databases and five DPs were characterized by different shapes of the dark pattern (“reticulated”, “campestris”, “reticulated/campestris” and “striped”) or by absence of it (“concolor”). Frequencies of different DP phenotypes differ between the two main mtDNA lineages settled in central-northern and in southern Italy, respectively. This pattern may be indicative of a role of long-term allopatric historical processes in determining the observed pattern. The analysis also identified a putative wide area of secondary contact, in central southern Italy, characterized by high diversity of the DP. Generalized Linear Models (GLMs), used to estimate a possible association between bioclimatic variables and the observed phenotypic variation, showed that each of the five DPs is correlated to different environmental factors and show a different distribution of areas with high probability of occurrence. However, for all but one of the DPs, the area with the greatest probability does not correspond exactly to the real distribution of the DP. Conversely, the “concolor” phenotype does not seem related to any particular mtDNA lineage and it shows a preference for areas with high temperature and low rainfall. This is in agreement with the expectation of low amount of melanin of the dorsal pattern that, in the study areas, is characterized by a light uniform coloration which could confer a better thermoregulation ability in high temperatures environments to avoid overheating.
The geographic variability of the dorsal pattern (DP) of the Italian wall lizard, Podarcis siculus, across its native range was studied with the aim to understand whether the distributions of this phenotypic trait were more shaped by allopatric differentiation rather than adaptive processes. A total of 1298 georeferenced observations scattered across the Italian peninsula and the main islands (Sicily, Corsica and Sardinia) were obtained from citizen science databases and five DPs were characterized by different shapes of the dark pattern (“reticulated”, “campestris”, “reticulated/campestris” and “striped”) or by absence of it (“concolor”). Frequencies of different DP phenotypes differ between the two main mtDNA lineages settled in central-northern and in southern Italy respectively. This pattern may be indicative of a role of long-term allopatric historical processes in determining the observed pattern. The analysis also identified a putative wide area of secondary contact, in central southern Italy, characterized by high diversity of the DP. Generalized Linear Models (GLMs), used to estimate a possible association between bioclimatic variables and the observed phenotypic variation, showed that each of the five DPs is correlated to different environmental factors and show different distribution of areas with high probability of occurrence. However, for all but one of the DPs, the area with the greatest probability does not correspond exactly to the real distribution of the DP. Conversely, the “concolor” phenotype does not seem related to any particular mtDNA lineage and it shows a preference for areas with high temperature and low rainfall. This is in agreement with the expectation of low amount of melanin of the dorsal pattern that, in the study areas, is characterized by a light uniform coloration which could confer a better thermoregulation ability in high temperatures environments avoiding overheating.
The Tuscan Archipelago is one of the most ancient and ecologically heterogeneous island systems in the Mediterranean. The biodiversity of these islands was strongly shaped by the Pliocene and Pleistocene sea regressions and transgression, resulting in different waves of colonization and isolation of species coming from the mainland. The Italian wall lizard, Podarcis siculus, is present on the following islands of the Tuscan Archipelago: Elba, Giglio, Giannutri, Capraia, Montecristo and Cerboli. The species in the area displays a relatively high morphological variability that in the past led to the description of several subspecies. In this study, both the genetic and morphological diversity of P. siculus of the Tuscan Archipelago were investigated. Specifically, the meristic characters and the dorsal pattern were analyzed, while the genetic relationships among these populations were explored with mtDNA and microsatellite nuclear markers to reconstruct the colonization history of the Archipelago. Our results converge in the identification of at least two different waves of colonization in the Archipelago: Elba, and the populations of Cerboli and Montecristo probably originate from historical introductions from mainland Tuscany, while those of Giglio and Capraia are surviving populations of an ancient lineage which colonized the Tuscan Archipelago during the Pliocene and which shares a common ancestry with the P. siculus populations of south-eastern Italy. Giannutri perhaps represents an interesting case of hybridization between the populations from mainland Tuscany and the Giglio-Capraia clade. Based on the high phenotypic and molecular distinctiveness of this ancient clade, these populations should be treated as distinct units deserving conservation and management efforts as well as further investigation to assess their taxonomic status.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.