Inspired by the recent developments in the study of the thermodynamics of van der Waals fluids via the theory of nonlinear conservation laws and the description of phase transitions in terms of classical (dissipative) shock waves, we propose a novel approach to the construction of multi-parameter generalisations of the van der Waals model. The theory of integrable nonlinear conservation laws still represents the inspiring framework. Starting from a macroscopic approach, a four parameter family of integrable extended van der Waals models is indeed constructed in such a way that the equation of state is a solution to an integrable nonlinear conservation law linearisable by a Cole-Hopf transformation. This family is further specified by the request that, in regime of high temperature, far from the critical region, the extended model reproduces asymptotically the standard van der Waals equation of state. We provide a detailed comparison of our extended model with two notable empirical models such as Peng-Robinson and Soave's modification of the Redlich-Kwong equations of state. We show that our extended van der Waals equation of state is compatible with both empirical models for a suitable choice of the free parameters and can be viewed as a master interpolating equation. The present approach also suggests that further generalisations can be obtained by including the class of dispersive and viscous-dispersive nonlinear conservation laws and could lead to a new type of thermodynamic phase transitions associated to nonclassical and dispersive shock waves.
We propose a novel approach to the solution of nematic Liquid Crystal models based on the derivation of a system of nonlinear wave equations for order parameters such that the occurrence of uniaxial and biaxial phase transitions can be interpreted as the propagation of a two-dimensional shock wave in the space of thermodynamic parameters. We obtain the exact equations of state for an integrable model of biaxial nematic liquid crystals and show that the classical transition from isotropic to uniaxial phase in absence of external fields is the result of a van der Waals type phase transition, where the jump in the order parameters is a classical shock generated from a gradient catastrophe at a non-zero isotropic field. The study of the equations of state provides the first analytical description of the rich structure of nematics phase diagrams in presence of external fields.
We consider a family of thermodynamic models such that the energy density can be expressed as an asymptotic expansion in the scale formal parameter and whose terms are suitable functions of the volume density. We examine the possibility to construct solutions for the Maxwell thermodynamic relations relying on their symmetry properties and deduce the critical properties implied in terms of the dynamics of coexistence curves in the space of thermodynamic variables.
We propose a novel approach to the solution of nematic Liquid Crystal models based on the derivation of a system of nonlinear wave equations for order parameters such that the occurrence of uniaxial and biaxial phase transitions can be interpreted as the propagation of a two-dimensional shock wave in the space of thermodynamic parameters. We obtain the exact equations of state for an integrable model of biaxial nematic liquid crystals and show that the classical transition from isotropic to uniaxial phase in absence of external fields is the result of a van der Waals type phase transition, where the jump in the order parameters is a classical shock generated from a gradient catastrophe at a non-zero isotropic field. The study of the equations of state provides the first analytical description of the rich structure of nematics phase diagrams in presence of external fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.