In order to better understand the process of angiogenesis in the developing human brain, we have examined the spatial relationship and relative contributions of endothelial cells and pericytes, the two primary cell types involved in vessel growth, together with their relation with the vascular basement membrane. Pericytes were immunolocalized through use of the specific markers nerve/glial antigen 2 (NG2) proteoglycan, endosialin (CD248) and the platelet-derived growth factor receptor beta (PDGFR-beta), while endothelial cells were identified by the pan-endothelial marker CD31 and the blood brain barrier (BBB)-specific markers claudin-5 and glucose transporter isoform 1 (GLUT-1). The quantitative analysis demonstrates that microvessels of the fetal human telencephalon are characterized by a continuous layer of activated/angiogenic NG2 pericytes, which tightly invest endothelial cells and participate in the earliest stages of vessel growth. Immunolabelling with anti-active matrix metalloproteinase-2 (aMMP-2) and anti-collagen type IV antibodies revealed that aMMP-2 producing endothelial cells and pericytes are both associated with the vascular basement membrane during vessel sprouting. Detailed localization of the two vascular cell types during angiogenesis suggests that growing microvessels of the human telencephalon are formed by a pericyte-driven angiogenic process in which the endothelial cells are preceded and guided by migrating pericytes during organization of the growing vessel wall.
The formation of endothelial tight junctions (TJs) is crucial in blood-brain barrier (BBB) differentiation, and the expression and targeting of TJ-associated proteins mark the beginning of BBB functions. Using confocal microscopy, this study analyzed endothelial TJs in adult human cerebral cortex and the fetal telencephalon and leptomeninges in order to compare the localization of two TJ-associated transmembrane proteins, occludin and claudin-5. In the arterioles and microvessels of adult brain, occludin and claudin-5 form continuous bands of endothelial immunoreactivity. During fetal development, occludin and claudin-5 immunoreactivity is first detected as a diffuse labeling of endothelial cytoplasm. Later, at 14 weeks, the immunosignal for both proteins shifts from the cytoplasm to the interface of adjacent endothelial cells, forming a linear, widely discontinuous pattern of immunoreactivity that achieves an adult-like appearance within a few weeks. These results demonstrate that occludin and claudin-5 expression is an early event in human brain development, followed shortly by assembly of both proteins at the junctional areas. This incremental process suggests more rapid establishment of the human BBB, consistent with its specific function of creating a suitable environment for neuron differentiation and neurite outgrowth during neocortical histogenesis.
In this study, we investigated the involvement of the blood-brain barrier (BBB) in the brain of the dystrophin-deficient mdx mouse, an experimental model of Duchenne muscular dystrophy (DMD). To this purpose, we used two tight junction markers, the Zonula occludens (ZO-1) and claudin-1 proteins, and a glial marker, the aquaporin-4 (AQP4) protein, whose expression is correlated with BBB differentiation and integrity. Results showed that most of the brain microvessels in mdx mice were lined by altered endothelial cells that showed open tight junctions and were surrounded by swollen glial processes. Moreover, 18% of the perivascular glial endfeet contained electron-dense cellular debris and were enveloped by degenerating microvessels. Western blot showed a 60% reduction in the ZO-1 protein content in mdx mice and a similar reduction in AQP4 content compared with the control brain. ZO-1 immunocytochemistry and claudin-1 immunofluorescence in mdx mice revealed a diffuse staining of microvessels as compared with the control ones, which displayed a banded staining pattern. ZO-1 immunogold electron microscopy showed unlabeled tight junctions and the presence of gold particles scattered in the endothelial cytoplasm in the mdx mice, whereas ZO-1 gold particles were exclusively located at the endothelial tight junctions in the controls. Dual immunofluorescence staining of ␣-actin and ZO-1 revealed colocalization of these proteins. As in ZO-1 staining, the pattern of immunolabeling with anti-␣-actin antibody was diffuse in the mdx vessels and pointed or banded in the controls. ␣-actin immunogold electron microscopy showed gold particles in the cytoplasms of endothelial cells and pericytes in the mdx mice, whereas ␣-actin gold particles were revealed on the endothelial tight junctions and the cytoskeletal microfilaments of pericytes in the controls. Perivascular glial processes of the mdx mice appeared faintly stained by anti-AQP4 antibody, while in the controls a strong AQP4 labeling of glial processes was detected at light and electron microscope level. The vascular permeability of the mdx brain microvessels was investigated by means of the horseradish peroxidase (HRP). After HRP injection, extensive perivascular areas of marker escape were observed in mdx mice, whereas HRP was exclusively intravascularly localized in the controls. Inflammatory cells, CD4-, CD8-, CD20-, and CD68-positive cells, were not revealed in the perivascular stroma of the mdx brain. These findings indicate that dystrophin deficiency in the mdx brain leads to severe injury of the endothelial and glial cells with disturbance in ␣-actin cytoskeleton, ZO-1, claudin-1, and AQP4 assembly, as well as BBB breakdown. The BBB alterations suggest that changes in vascular permeability are involved in the pathogenesis of the neurological dysfunction associated with DMD. GLIA 42:235-251, 2003.
S U M M A R Y P-Glycoprotein (P-gp) is an ATP-dependent efflux transporter that extrudes non-polar molecules, including cytotoxic substances and drugs, from the cells. It was initially found in cancer cells and then was shown to be a normal component of complex transport systems working at the blood-brain barrier (BBB). Previous studies have demonstrated that, in the brain, P-gp is localized on the luminal plasmalemma of BBB endothelial cells and that it may interact with the caveolar compartment of these cells. The aim of this study was to identify the site of cellular expression of P-gp in human brain in situ and to morphologically determine whether an association may exist between P-gp and caveolin-1, a structural and functional protein of the caveolar frame. The study was carried out on human cerebral cortex by immunoconfocal microscopy with antibodies to both P-gp and caveolin-1. The results show that P-gp marks the microvessels of the cortex and that the transporter is localized in the luminal endothelial compartment, where it co-localizes with caveolin-1. The demonstration of this co-localization of P-gp with caveolin-1 contributes a morphological backing to biochemical studies on P-gp/caveolin-1 relationships and leads us to suggest that interactions between these molecules may occur at the BBB endothelia.
In fibromyalgia (FM), reduced habituation of laser-evoked potentials (LEPs) suggests a dysfunction of pain processing at a central level. In this study, we aimed to further examine the nociceptive pathways at the peripheral to the central level in a large group of FM patients by means of LEPs and skin biopsy, in light of healthy controls findings and main clinical features. One hundred and ninety-nine FM patients and 109 age- and sex-matched controls were submitted to LEPs by the dorsum of the right hand and the skin over the right chest and knee tender point stimulation. Skin biopsy was performed in 21 randomly selected FM patients and 60 age- and sex-matched controls. The mean N2-P2 amplitude was reduced in the whole FM group, with normal or even increased values in patients with migraine as comorbidity and reduced values in other patients including those presenting with distal sensory deficits. All patients had reduced N2-P2 habituation in respect to controls. In the FM group, LEPs habituation was correlated with pain at tender points and bad quality of life. Epidermal fiber density was significantly reduced in FM patients versus controls, and correlated with N2-P2 amplitude by the hand and chest tender-point stimulation. Dysfunction in the nociceptive system at both the central and peripheral levels may concur to explain phenotypical eterogeneity and clinical symptom complexity in fibromyalgia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.