A spatially developing supersonic adiabatic flat plate boundary layer flow (at M-infinity=2.25 and Re(theta)approximate to4000) is analyzed by means of direct numerical simulation. The numerical algorithm is based on a mixed weighted essentially nonoscillatory compact-difference method for the three-dimensional Navier-Stokes equations. The main objectives are to assess the validity of Morkovin's hypothesis and Reynolds analogies, and to analyze the controlling mechanisms for turbulence production, dissipation, and transport. The results show that the essential dynamics of the investigated turbulent supersonic boundary layer flow closely resembles the incompressible pattern. The Van Driest transformed mean velocity obeys the incompressible law-of-the-wall, and the mean static temperature field exhibits a quadratic dependency upon the mean velocity, as predicted by the Crocco-Busemann relation. The total temperature has been found not to be precisely uniform, and total temperature fluctuations are found to be non-negligible. Consistently, the turbulent Prandtl number is not unity, and it varies between 0.7 and 0.8 in the outer part of the boundary layer. Nonetheless, a modified strong Reynolds analogy is still verified. In agreement with the low Mach number results, the streamwise velocity component and the temperature are only weakly anti-correlated. The turbulent kinetic energy budget also shows similarities with the incompressible case provided all terms of the equation are properly scaled; indeed, the leading compressibility contributions are negligible throughout the boundary layer. (C) 2004 American Institute of Physics
The interaction of a spatially developing adiabatic boundary layer flow at M∞=2.25 and Reθ=3725 with an impinging oblique shock wave (β=33.2°) is analyzed by means of direct numerical simulation of the compressible Navier-Stokes equations. Under the selected flow conditions the incoming boundary layer undergoes mild separation due to the adverse pressure gradient. Coherent structures are shed near the average separation point and the flow field exhibits large-scale low-frequency unsteadiness. The formation of the mixing layer is primarily responsible for the amplification of turbulence, which relaxes to an equilibrium state past the interaction. Complete equilibrium is attained in the inner part of the boundary layer, while in the outer region the relaxation process is incomplete. Far from the interaction zone, turbulence exhibits a universal behavior and it shows similarities with the incompressible case. The interaction of the coherent structures with the incident shock produces acoustic waves that propagate upstream, thus inducing an oscillatory motion of the separation bubble and a subsequent flapping motion of the reflected shock. The simulation indicates the occurrence of low-frequency tones in the interaction zone associated with peaks in the pressure spectra at discrete frequencies. We propose that such large-scale low-frequency unsteadiness is due to a resonance mechanism that establishes in the interaction region, and which has close similarities with those responsible for the generation of tones in cavity flows and screeching jets. In order to support our claim, we develop a simplified model for the acoustic resonance that is capable to predict the characteristic frequencies of the tones.
We study turbulent flows in pressure-driven ducts with square cross-section through direct numerical simulation in a wide enough range of Reynolds number to reach flow conditions which are representative of fully developed turbulence. Numerical simulations are carried out over extremely long integration times to get adequate convergence of the flow statistics, and specifically high-fidelity representation of the secondary motions which arise. The intensity of the latter is found to be in the order of 1-2% of the bulk velocity, and unaffected by Reynolds number variations. The smallness of the mean convection terms in the streamwise vorticity equation points to a simple characterization of the secondary flows, which in the asymptotic high-Re regime are found to be approximated with good accuracy by eigenfunctions of the Laplace operator. Despite their effect of redistributing the wall shear stress along the duct perimeter, we find that secondary motions do not have large influence on the mean velocity field, which can be characterized with good accuracy as that resulting from the concurrent effect of four independent flat walls, each controlling a quarter of the flow domain. As a consequence, we find that parametrizations based on the hydraulic diameter concept, and modifications thereof, are successful in predicting the duct friction coefficient.
A spatially developing supersonic boundary layer at Mach 2 is analysed by means of direct numerical simulation of the compressible Navier-Stokes equations, with the objective of quantitatively characterizing the coherent vortical structures. The study shows structural similarities with the incompressible case. In particular, the inner layer is mainly populated by quasi-streamwise vortices, while in the outer layer we observe a large variety of structures, including hairpin vortices and hairpin packets. The characteristic properties of the educed structures are found to be nearly uniform throughout the outer layer, and to be weakly affected by the local vortex orientation. In the outer layer, typical core radii vary in the range of 5-6 dissipative length scales, and the associated circulation is approximately constant, and of the order of 180 wall units. The statistical properties of the vortical structures in the outer layer are similar to those of an ensemble of non-interacting closed-loop vortices with a nearly planar head inclined at an angle of approximately 20 degrees with respect to the wall, and with an overall size of approximately 30 dissipative length scales
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.