Knockout mouse technology has been used over the last decade to define the essential roles of ovarian-expressed genes and uncover genetic interactions. In particular, we have used this technology to study the function of multiple members of the transforming growth factor-beta superfamily including inhibins, activins, and growth differentiation factor 9 (GDF-9 or Gdf9). Knockout mice lacking GDF-9 are infertile due to a block in folliculogenesis at the primary follicle stage. In addition, recombinant GDF-9 regulates multiple cumulus granulosa cell functions in the periovulatory period including hyaluronic acid synthesis and cumulus expansion. We have also cloned an oocyte-specific homolog of GDF-9 from mice and humans, which is termed bone morphogenetic protein 15 (BMP-15 or Bmp15). To define the function of BMP-15 in mice, we generated embryonic stem cells and knockout mice, which have a null mutation in this X-linked gene. Male chimeric and Bmp15 null mice are normal and fertile. In contrast to Bmp15 null males and Gdf9 knockout females, Bmp15 null females (Bmp15(-/-)) are subfertile and usually have minimal ovarian histopathological defects, but demonstrate decreased ovulation and fertilization rates. To further decipher possible direct or indirect genetic interactions between GDF-9 and BMP-15, we have generated double mutant mice lacking one or both alleles of these related homologs. Double homozygote females (Bmp15(-/-)Gdf9(-/-)) display oocyte loss and cysts and resemble Gdf9(-/-) mutants. In contrast, Bmp15(-/-)Gdf9(+/-) female mice have more severe fertility defects than Bmp15(-/-) females, which appear to be due to abnormalities in ovarian folliculogenesis, cumulus cell physiology, and fertilization. Thus, the dosage of intact Bmp15 and Gdf9 alleles directly influences the destiny of the oocyte during folliculogenesis and in the periovulatory period. These studies have important implications for human fertility control and the maintenance of fertility and normal ovarian physiology.
The steroid hormone progesterone plays a central role in the reproductive events associated with pregnancy establishment and maintenance. Physiological effects of progesterone are mediated by interaction of the hormone with specific intracellular progesterone receptors (PRs) that are expressed as two protein isoforms, PR-A and PR-B. Both proteins arise from the same gene and are members of the nuclear receptor superfamily of transcription factors. Since these two isoforms were identified in the early 1970s, extensive controversy has existed regarding the selective contributions of the individual PR proteins to the physiological functions of progesterone. During the past decade, significant progress has been made in this regard using two complimentary approaches. First, analysis of the structural and functional relationships of each isoform using in vitro systems has generated compelling evidence to support the conclusion that PR-A and PR-B have different transcription activation properties when liganded to progesterone. Second, the advent of gene-targeting approaches to introduce subtle mutations into the mouse genome has facilitated the evaluation of the significance of observations made in vitro in a physiological context. Selective ablation of PR-A and PR-B proteins in mice using these technologies has allowed us to address the spatiotemporal expression and contribution of the individual PR isoforms to the pleiotropic reproductive activities of progesterone. Analysis of the phenotypic consequences of these mutations on female reproductive function has provided proof of concept that the distinct transcriptional responses to PR-A and PR-B observed in cell-based transactivation assays are, indeed, reflected in an ability of the individual isoforms to elicit distinct, physiological responses to progesterone. In PR-A knockout mice, in which the expression of the PR-A isoform is selectively ablated (PRAKO), the PR-B isoform functions in a tissue-specific manner to mediate a subset of the reproductive functions of PRs. Ablation of PR-A does not affect responses of the mammary gland or thymus to progesterone but instead results in severe abnormalities in ovarian and uterine function, leading to female infertility. These tissue-selective activities of PR-B are due to this isoform's ability to regulate a subset of progesterone-responsive target genes in reproductive tissues rather than to differences in its spatiotemporal expression relative to the PR-A isoform. More recent studies using PR-B knockout (PRBKO) mice have shown that ablation of PR-B does not affect ovarian, uterine, or thymic responses to progesterone but rather results in reduced mammary ductal morphogenesis. Thus, PR-A is both necessary and sufficient to elicit the progesterone-dependent reproductive responses necessary for female fertility, while PR-B is required to elicit normal proliferative responses of the mammary gland to progesterone. This chapter will summarize recent progress in our understanding of the selective contribution of the two...
Despite myriads of biological activities ascribed to uteroglobin (UG), a steroid-inducible secreted protein, its physiological functions are unknown. Mice in which the uteroglobin gene was disrupted had severe renal disease that was associated with massive glomerular deposition of predominantly multimeric fibronectin (Fn). The molecular mechanism that normally prevents Fn deposition appears to involve high-affinity binding of UG with Fn to form Fn-UG heteromers that counteract Fn self-aggregation, which is required for abnormal tissue deposition. Thus, UG is essential for maintaining normal renal function in mice, which raises the possibility that an analogous pathogenic mechanism may underlie genetic Fn-deposit human glomerular disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.