The electrochemical gating technique is a powerful tool to tune the surface electronic conduction properties of various materials by means of pure charge doping, but its efficiency is thought to be hampered in materials with a good electronic screening. We show that, if applied to a metallic superconductor (NbN thin films), this approach allows observing reversible enhancements or suppressions of the bulk superconducting transition temperature, which vary with the thickness of the films. These results are interpreted in terms of proximity effect, and indicate that the effective screening length depends on the induced charge density, becoming much larger than that predicted by standard screening theory at very high electric fields.
We report on the analysis method to extract quantitative local electrodynamics in superconductors by means of the magneto-optical technique. First of all, we discuss the calibration procedure to convert the local light intensity values into magnetic induction field distribution and start focusing on the role played by the generally disregarded magnetic induction components parallel to the indicator film plane (in-plane field effect). To account for the reliability of the whole technique, the method used to reconstruct the electrical current density distribution is reported, together with a numerical test example. The methodology is applied to measure local magnetic field and current distributions on a typical YBa 2 Cu 3 O 7−x good quality film. We show how the in-plane field influences the MO measurements, after which we present an algorithm to account for the in-plane field components. The meaningful impact of the correction on the experimental results is shown. Afterwards, we discuss some aspects about the electrodynamics of the superconducting sample.
We report on a combined experimental and modelling approach towards the design and fabrication of efficient bulk shields for low-frequency magnetic fields. To this aim, MgB2 is a promising material when its growing technique allows the fabrication of suitably shaped products and a realistic numerical modelling can be exploited to guide the shield design. Here, we report the shielding properties of an MgB2 tube grown by a novel technique that produces fully machinable bulks, which can match specific shape requirements. Despite a height/radius aspect ratio of only 1.75, shielding factors higher than 175 and 55 were measured at temperature T = 20 K and in axially-applied magnetic fields μ0Happl = 0.1 and 1.0 T, respectively, by means of cryogenic Hall probes placed on the tube’s axis. The magnetic behaviour of the superconductor was then modelled as follows: first we used a two-step procedure to reconstruct the macroscopic critical current density dependence on magnetic field, Jc(B), at different temperatures from the local magnetic induction cycles measured by the Hall probes. Next, using these Jc(B) characteristics, by means of finite-element calculations we reproduced the experimental cycles remarkably well at all the investigated temperatures and positions along the tube’s axis. Finally, this validated model was exploited to study the influence both of the tube’s wall thickness and of a cap addition on the shield performance. In the latter case, assuming the working temperature of 25 K, shielding factors of 105 and 104 are predicted in axial applied fields μ0Happl = 0.1 and 1.0 T, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.