Werning, and panelists and participants on the HELP! (Health and Pandemics Economics Group) seminar on March 27th, the World Bank's Development Policy and Covid-19 e-seminar on April 1st, and the Federal Reserve Bank of Chicago Virtual Macro Seminar on April 3rd, and the Chicago Economics Department lunch on April 8th. The authors declare to have no conflict of interest to disclose regarding the research on this paper. The views expressed herein are those of the author and do not necessarily reflect the views of the National Bureau of Economic Research. At least one co-author has disclosed a financial relationship of potential relevance for this research. Further information is available online at http://www.nber.org/papers/w26981.ack NBER working papers are circulated for discussion and comment purposes. They have not been peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications.
We study the optimal lockdown policy for a planner who wants to control the fatalities of a pandemic while minimizing the output costs of the lockdown. We use the SIR epidemiology model and a linear economy to formalize the planner's dynamic control problem. The optimal policy depends on the fraction of infected and susceptible in the population. We parametrize the model using data on the COVID19 pandemic and the economic breadth of the lockdown. The quantitative analysis identifies the features that shape the intensity and duration of the optimal lockdown policy. Our baseline parametrization is conditional on a 1% of infected agents at the outbreak, no cure for the disease, and the possibility of testing. The optimal policy prescribes a severe lockdown beginning two weeks after the outbreak, covers 60% of the population after a month, and is gradually withdrawn covering 20% of the population after 3 months. The intensity of the lockdown depends on the gradient of the fatality rate as a function of the infected, and on the assumed value of a statistical life. The absence of testing increases the economic costs of the lockdown, and shortens the duration of the optimal lockdown which ends more abruptly. Welfare under the optimal policy with testing is higher, equivalent to a one-time payment of 2% of GDP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.