BackgroundBisphenol A (BPA) is an environmental compounds is known to possess endocrine disruption potentials. Bisphenol A has epigenetic effects as deregulated expression of microRNAs; such epigenetic marks can induce up/down alterations in gene expression that may persist throughout a lifetime. Bisphenol A (BPA) exposure has been documented in pregnant women, but consequences for development of offspring after BPA exposure during pregnancy are not yet widely studied. Therefore, the aim of this study was to gain a comprehensive understanding of microRNAs changes in the placenta transcriptome from pregnant women subjected to therapeutic abortion for fetal malformation and correlate the impact of gestational exposure to BPA on these developmental changes.MethodsWe performed a comparative analysis of genome wide miRNA expression in placentas from pregnant women exposed to BPA using microarray technology to identify miRNAs which were aberrantly expressed in placentas from malformed fetuses. The expression changes of differential expressed miRNAs in the samples used for microarray were confirmed by qPCR . Beside, we applied various bioinformatics tools to predict the target genes of the identified miR-146a and explore their biological function and downstream pathways.ResultsWe found that miR-146a was significant overexpressed and correlated significantly with BPA accumulation in the placenta from pregnant women living in a polluted area and undergoing therapeutic abortion due to fetal malformations. Beside, we applied various bioinformatics tools to predict the target genes of miR-146a and explore their biological function and downstream pathways.ConclusionsFor the first time, we found, in humans, that miR-146a was significant over-expressed and correlated significantly with BPA accumulation in the placenta. Our results lead to the suggestion that miRNAs could be potential biomarkers to clarify the mechanisms of environmental diseases.
MicroRNA (miRNA) has emerged as an important regulator of gene expression in neurodegenerative disease as amyotrophic lateral sclerosis (ALS). In the nervous system, dysregulation in miRNA-related pathways is subordinated to neuronal damage and cell death, which contributes to the expansion of neurodegenerative disorders, such as ALS. In the present research, we aimed to profile dysregulation of miRNAs in ALS blood and neuromuscular junction as well as healthy blood control by next-generation sequencing (NGS). The expression of three upregulated miRNAs, as miR-338-3p, miR-223-3p, and miR-326, in the ALS samples compared to healthy controls, has been validated by qRT-PCR in a cohort of 45 samples collected previously. Bioinformatics tools were used to perform ALS miRNAs target analysis and to predict novel miRNAs secondary structure. The analysis of the NGS data identified 696 and 49 novel miRNAs which were differentially expressed in ALS tissues. In particular, in neuromuscular junction the differential expression of miR-338-3p, which we previously found upregulated in different types of ASL tissues, miR-223-3p, and miR-326 was elevated compared to normal control. ALS miRNAs gene target were significantly involved in neuronal related pathway as BDFN1 and HIF-1genes. This study presents the direct experimental evidence that, overall, miR-338-3p is highly expressed in ALS tissues including neuromuscular junction characterizing ALS from normal tissues. Beside, our analysis identified, for the first time, novel miRNAs highly expressed in ALS tissues. In conclusion, the results indicate that miRNAs has an important role in the diagnosis and treatment of ALS.
Telomerase and telomeric complex have been linked to a variety of disease states related to neurological dysfunction. In amyotrophic lateral sclerosis (ALS) patients, telomerase activity, as human telomerase reverse transcriptase (hTERT) expression, has not been characterized yet. Here, for the first time, we characterized telomerase and related pathway in blood sample and spinal cord from ALS patients compared with healthy controls. We found that hTERT expression level was significantly lower in ALS patients and was correlated either to p53 mRNA expression or p21 expression, pointing out the hypothesis that telomerase inhibition could be a pathogenetic contributor to neurodegeneration in ALS. As a consequence of the reduced telomerase activity, we identified shorter telomeres in leukocytes from sporadic ALS patients compared with healthy control group.
Algal viruses are important contributors to carbon cycling, recycling nutrients and organic material through host lysis. Although viral infection has been described as a primary mechanism of phytoplankton mortality, little is known about host defense responses. We show that viral infection of the bloom-forming, planktonic diatom Chaetoceros socialis induces the mass formation of resting spores, a heavily silicified life cycle stage associated with carbon export due to rapid sinking. Although viral RNA was detected within spores, mature virions were not observed. 'Infected' spores were capable of germinating, but did not propagate or transmit infectious viruses. These results demonstrate that diatom spore formation is an effective defense strategy against viral-mediated mortality. They provide a possible mechanistic link between viral infection, bloom termination, and mass carbon export events and highlight an unappreciated role of viruses in regulating diatom life cycle transitions and ecological success.
Microalgae represent a promising resource for the production of beneficial natural compounds due to their richness in secondary metabolites and easy cultivation. Carotenoids feature among distinctive compounds of many microalgae, including diatoms, which owe their golden color to the xanthophyll fucoxanthin. Carotenoids have antioxidant, anti-obesity and anti-inflammatory properties, and there is a considerable market demand for these compounds. Here, with the aim to increase the carotenoid content in the model diatom Phaeodactylum tricornutum, we exploited genetic transformation to overexpress genes involved in the carotenoid biosynthetic pathway. We produced transgenic lines over-expressing simultaneously one, two or three carotenoid biosynthetic genes, and evaluated changes in pigment content with high-performance liquid chromatography. Two triple transformants over-expressing the genes Violaxanthin de-epoxidase (Vde), Vde-related (Vdr) and Zeaxanthin epoxidase 3 (Zep3) showed an accumulation of carotenoids, with an increase in the fucoxanthin content up to four fold. Vde, Vdr and Zep3 mRNA and protein levels in the triple transformants were coherently increased. The exact role of these enzymes in the diatom carotenoid biosynthetic pathway is not completely elucidated nevertheless our strategy successfully modulated the carotenoid metabolism leading to an accumulation of valuable compounds, leading the way toward improved utilization of microalgae in the field of antioxidants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.