Mutations in more than 70 genes cause hereditary anemias (HA), a highly heterogeneous group of rare/low frequency disorders in which we included: hyporegenerative anemias, as congenital dyserythropoietic anemia (CDA) and Diamond-Blackfan anemia; hemolytic anemias due to erythrocyte membrane defects, as hereditary spherocytosis and stomatocytosis; hemolytic anemias due to enzymatic defects. The study describes the diagnostic workflow for HA, based on the development of two consecutive versions of a targeted-NGS panel, including 34 and 71 genes, respectively. Seventy-four probands from 62 unrelated families were investigated. Our study includes the most comprehensive gene set for these anemias and the largest cohort of patients described so far. We obtained an overall diagnostic yield of 64.9%. Despite 54.2% of cases showed conclusive diagnosis fitting well to the clinical suspicion, the multi-gene analysis modified the original clinical diagnosis in 45.8% of patients (nonmatched phenotype-genotype). Of note, 81.8% of nonmatched patients were clinically suspected to suffer from CDA. Particularly, 45.5% of the probands originally classified as CDA exhibited a conclusive diagnosis of chronic anemia due to enzymatic defects, mainly due to mutations in PKLR gene. Interestingly, we also identified a syndromic CDA patient with mild anemia and epilepsy, showing a homozygous mutation in CAD gene, recently associated to early infantile epileptic encephalopathy-50 and CDA-like anemia. Finally, we described a patient showing marked iron overload due to the coinheritance of PIEZO1 and SEC23B mutations, demonstrating that the multi-gene approach is valuable not only for achieving a correct and definitive diagnosis, but also for guiding treatment.
Dehydrated hereditary stomatocytosis (DHSt) is an autosomal dominant congenital hemolytic anemia with moderate splenomegaly and often compensated hemolysis. Affected red cells are characterized by a nonspecific cation leak of the red cell membrane, reflected in elevated sodium content, decreased potassium content, elevated MCHC and MCV, and decreased osmotic fragility. The majority of symptomatic DHSt cases reported to date have been associated with gain-of-function mutations in the mechanosensitive cation channel gene, PIEZO1. A recent study has identified two families with DHSt associated with a single mutation in the KCNN4 gene encoding the Gardos channel (KCa3.1), the erythroid Ca 21 -sensitive K 1 channel of intermediate conductance, also expressed in many other cell types. We present here, in the second report of DHSt associated with KCNN4 mutations, two previously undiagnosed DHSt families. Family NA exhibited the same de novo missense mutation as that recently described, suggesting a hot spot codon for DHSt mutations. Family WO carried a novel, inherited missense mutation in the ion transport domain of the channel. The patients' mild hemolytic anemia did not improve post-splenectomy, but splenectomy led to no serious thromboembolic events. We further characterized the expression of KCNN4 in the mutated patients and during erythroid differentiation of CD341 cells and K562 cells. We also analyzed KCNN4 expression during mouse embryonic development.
Hereditary stomatocytoses (HSts) are a wide spectrum of hemolytic anemias in which the erythrocyte membrane cation permeability is increased. Dehydrated hereditary stomatocytosis is the most frequent among HSts. It is caused by missense mutations in PIEZO1 and KCNN4 genes. We described 123 patients enrolled in our Genetic Unit from 2013 to 2017. Overall HSt subjects exhibit macrocytic mild anemia. We found that PIEZO1 is the most frequent mutated gene within our families (47% of pedigrees). In 59.1% of cases the mutations localized in the nonpore protein domain, while in 40.9% of patients they localized in the central pore region. The genotype-phenotype correlation analysis on 29 PIEZO1-patients demonstrated that most of severely affected patients carried mutations in the pore domain, suggesting that the severity of this condition is related to the pore properties and intracellular domain that could be responsible of interactions with intracellular components. This is the first cohort study on a large set of hereditary stomatocytosis patients, stratified according to their causative gene useful for diagnosis, prognosis, and management of these patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.