We consider a particular case of the Fleet Quickest Routing Problem (FQRP) on a grid graph of m 9 n nodes that are placed in m levels and n columns. Starting nodes are placed at the first (bottom) level, and nodes of arrival are placed at the mth level. A feasible solution of FQRP consists in n Manhattan paths, one for each vehicle, such that capacity constraints are respected. We establish m*, i.e. the number of levels that ensures the existence of a solution to FQRP in any possible permutation of n destinations. In particular, m* is the minimum number of levels sufficient to solve any instance of FQRP involving n vehicles, when they move in the ways that the literature has until now assumed. Existing algorithms give solutions that require, for some values of n, more levels than m*. For this reason, we provide algorithm CaR, which gives a solution in a graph m* 9 n, as a minor contribution.
The k-centrum of a graph G = ( V , E ) is the set of vertices each minimizing the sum of the distances from it to the corresponding k farthest vertices of G. In this article properties of k-centrum of trees, where edges have positive real lengths, are investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.