Stiffness of elastic arteries like the aorta predicts cardiovascular risk. By directly reflecting arterial stiffness, having the best predictive value for cardiovascular outcome and the ease of its measurement, carotid-femoral pulse wave velocity is now considered the gold standard for arterial stiffness assessment in daily practice. Many different measurement procedures have been proposed. Therefore, standardization of its measurement is urgently needed, particularly regarding the distance measurement. This consensus document advises on the measurement procedures in general and provides arguments for the use of 80% of the direct carotid-femoral distance as the most accurate distance estimate. It also advises the use of 10 m/s as new cut-off value for carotid-femoral pulse wave velocity.
Background-Arterial stiffness has been associated with the risk of cardiovascular disease in selected groups of patients.We evaluated whether arterial stiffness is a predictor of coronary heart disease and stroke in a population-based study among apparently healthy subjects. Methods and Results-The present study included 2835 subjects participating in the third examination phase of the Rotterdam Study. Arterial stiffness was measured as aortic pulse wave velocity and carotid distensibility. Cox proportional hazards regression analysis was performed to compute hazard ratios. During follow-up, 101 subjects developed coronary heart disease (mean follow-up period, 4.1 years), and 63 subjects developed a stroke (mean follow-up period, 3.2 years). The risk of cardiovascular disease increased with increasing aortic pulse wave velocity index. Hazard ratios and corresponding 95% CIs of coronary heart disease for subjects in the second and third tertiles of the aortic pulse wave velocity index compared with subjects in the reference category were 1.72 (0.91 to 3.24) and 2.45 (1.29 to 4.66), respectively, after adjustment for age, gender, mean arterial pressure, and heart rate. Corresponding estimates for stroke were 1.22 (0.55 to 2.70) and 2.28 (1.05 to 4.96). Estimates decreased only slightly after adjustment for cardiovascular risk factors, carotid intima-media thickness, the ankle-arm index, and pulse pressure. The aortic pulse wave velocity index provided additional predictive value above cardiovascular risk factors, measures of atherosclerosis, and pulse pressure. Carotid distensibility as measured in this study was not independently associated with cardiovascular disease. Conclusions-Aortic pulse wave velocity is an independent predictor of coronary heart disease and stroke in apparently healthy subjects. (Circulation. 2006;113:657-663.)
Blood pressure (BP) is a major cardiovascular disease risk factor. To date, few variants associated with inter-individual BP variation have been identified. A genome-wide association study of systolic (SBP), diastolic BP (DBP), and hypertension in the CHARGE Consortium (n=29,136) identified 13 SNPs for SBP, 20 for DBP, and 10 for hypertension at p <4×10 -7 . The top 10 loci for SBP and DBP were incorporated into a risk score; mean BP and prevalence of hypertension increased in relation to number of risk alleles carried. When 10 CHARGE SNPs for each trait were meta-analyzed jointly with the Global BPgen Consortium (n=34,433), four CHARGE loci attained genome-wide significance (p<5×10 -8 ) for SBP (ATP2B1, CYP17A1, PLEKHA7, SH2B3), six for DBP (ATP2B1, CACNB2, CSK/ULK3, SH2B3, TBX3/TBX5, ULK4), and one for hypertension (ATP2B1). Identifying novel BP genes advances our understanding of BP regulation and highlights potential drug targets for the prevention or treatment of hypertension.High blood pressure affects about one third of adults and contributes to 13.5 million deaths worldwide each year and about half the global risk for stroke and ischemic heart disease. 1,2 Clinical trials, dating back more than forty years, have proven that drug treatment to lower blood pressure dramatically reduces the risk of cardiovascular events in people with hypertension. 3,4 The substantial (30-60 percent) 5 heritability of blood pressure has prompted extensive efforts to identify its genetic underpinnings. The search for genes associated with interindividual variation in blood pressure in the general population has used a variety of complementary approaches, which have yielded relatively few clues. Linkage and candidate gene studies, despite considerable knowledge about pathways that are critical to blood pressure homeostasis, have provided limited consistent evidence of blood pressure quantitative trait loci. 6,7,8 The study of families with rare Mendelian high or low blood pressure syndromes has identified mutations with gain or loss of function in about a dozen renal sodium regulatory genes. 9 Common variants in two renal sodium regulatory genes have been found to be associated with blood pressure in the general population. 10 The vast majority of the genetic contribution to variation in blood pressure, however, remains unexplained.Large-scale genome-wide association studies (GWAS), in which hundreds of thousands of common genetic variants are genotyped and analyzed for disease association, have shown great success in identifying genes associated with common diseases and traits. 11,12 The fact that six GWAS published to date, however, have not identified loci associated with blood pressure or hypertension at p<5×10 -8 , has raised concerns about the utility of this approach for these traits. 13,14,15,16,17,18 If blood pressure variation in the general population is due to multiple variants with small effects, very large study samples are needed to identify them. We established the Cohorts for Heart and Aging Research i...
AimsCarotid–femoral pulse wave velocity (PWV), a direct measure of aortic stiffness, has become increasingly important for total cardiovascular (CV) risk estimation. Its application as a routine tool for clinical patient evaluation has been hampered by the absence of reference values. The aim of the present study is to establish reference and normal values for PWV based on a large European population.Methods and resultsWe gathered data from 16 867 subjects and patients from 13 different centres across eight European countries, in which PWV and basic clinical parameters were measured. Of these, 11 092 individuals were free from overt CV disease, non-diabetic and untreated by either anti-hypertensive or lipid-lowering drugs and constituted the reference value population, of which the subset with optimal/normal blood pressures (BPs) (n = 1455) is the normal value population. Prior to data pooling, PWV values were converted to a common standard using established conversion formulae. Subjects were categorized by age decade and further subdivided according to BP categories. Pulse wave velocity increased with age and BP category; the increase with age being more pronounced for higher BP categories and the increase with BP being more important for older subjects. The distribution of PWV with age and BP category is described and reference values for PWV are established. Normal values are proposed based on the PWV values observed in the non-hypertensive subpopulation who had no additional CV risk factors.ConclusionThe present study is the first to establish reference and normal values for PWV, combining a sizeable European population after standardizing results for different methods of PWV measurement.
Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, nineteen associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biologic pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.