The feasibility of unmanned-aerial-vehicle-based photogrammetry was assessed for the reconstruction of high-resolution topography and geomorphic features of quarries by nadir and off-nadir imagery. The test site was a quarry located in the rural area of Turi (Bari, southern Italy). Two processing scenarios were created. Nadir images were initially used, and images acquired with off-nadir angles were added. An accurate set of ground control points (GCPs) were surveyed for both georeferencing purposes and validation processes. In the reconstruction of the surfaces, an accuracy of a few centimeters was achieved in the final positioning of point clouds representing the main geometries of quarry environment. However, greatest differences were found along the edges or the lines characterized by sudden slope changes. To better understand such results, some characteristic quarry shapes depicted by both the scenarios were compared to those surveyed by a total station used as an independent benchmark technique. It allowed to define the benefits introduced by the joint use of nadir and oblique images in the delineation of quarry shapes, surface discontinuities and better descriptions of sub-vertical walls. Beside the evaluation of benefits introduced by use of oblique cameras, the effectiveness of the proposed methodology was also discussed with alternative technologies. Unmanned aerial platforms represent an effective solution, with the need for few accurate GCPs
Commission I, WG V/b KEY WORDS: UAV, Photogrammetry, Laser, Risk analysis
ABSTRACT:In this paper the results of some surveys carried out in an area of Apulian territory affected by serious environmental hazard are presented. Unmanned Aerial Vehicles (UAV) are emerging as a key engineering tool for future environmental survey tasks. UAVs are increasingly seen as an attractive low-cost alternative or supplement to aerial and terrestrial photogrammetry due to their low cost, flexibility, availability and readiness for duty. In addition, UAVs can be operated in hazardous or temporarily inaccessible locations, that makes them very suitable for the assessment and management of environmental risk conditions. In order to verify the reliability of these technologies an UAV survey and A LIDAR survey have been carried outalong about 1 km of coast in the Salento peninsula, near the towns of San Foca, Torre dellOrso and SantAndrea( Lecce, Southern Italy). This area is affected by serious environmental risks due to the presence of dangerous rocky cliffs named falesie. The UAV platform was equipped with a photogrammetric measurement system that allowed us to obtain a mobile mapping of the fractured fronts of dangerous rocky cliffs. UAV-images data have been processed using dedicated software (AgisoftPhotoscan). The point clouds obtained from both the UAV and LIDAR surveys have been processed using Cloud Compare software, with the aim of testing the UAV results with respect to the LIDAR ones. The total error obtained was of centimeter-order that is a very satisfactory result. The environmental information has been arranged in an ArcGIS platform in order to assess the risk levels. The possibility to repeat the survey at time intervals more or less close together depending on the measured levels of risk and to compare the output allows following the trend of the dangerous phenomena. In conclusion, for inaccessible locations of dangerous rocky bodies the UAV survey coupled with GIS methodology proved to be a key engineering tool for the management of environmental risks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.