The transcription factor NF-KB is sequestered in the cytoplasm by the inhibitor protein IKBc~. Extracellular inducers of NF-KB activate signal transduction pathways that result in the phosphorylation and subsequent degradation of IKBa. At present, the link between phosphorylation of IKB~x and its degradation is not understood. In this report we provide evidence that phosphorylation of serine residues 32 and 36 of IKBcx targets the protein to the ubiquitin-proteasome pathway. IKBa is ubiquitinated in vivo and in vitro following phosphorylation, and mutations that abolish phosphorylation and degradation of IKBa in vivo prevent ubiquitination in vitro. Ubiquitinated IgBa remains associated with NF-KB, and the bound IKBa is degraded by the 26S proteasome. Thus, ubiquitination provides a mechanistic link between phosphorylation and degradation of IKBr
Lactacystin is a Streptomyces metabolite that inhibits cell cycle progression and induces differentiation in a murine neuroblastoma cell line. The cellular target of lactacystin is the 20 S proteasome, also known as the multicatalytic proteinase complex, an essential component of the ubiquitin-proteasome pathway for intracellular protein degradation. In aqueous solution at pH 8, lactacystin undergoes spontaneous hydrolysis to yield N-acetyl-L-cysteine and the inactive lactacystin analog, clasto-lactacystin dihydroxy acid. We have studied the mechanism of lactacystin hydrolysis under these conditions and found that it proceeds exclusively through the intermediacy of the active lactacystin analog, clasto-lactacystin beta-lactone. Conditions that stabilize lactacystin (and thus prevent the transient accumulation of the intermediate beta-lactone) negate the ability of lactacystin to inactivate the proteasome. Together these findings suggest that lactacystin acts as a precursor for clasto-lactacystin beta-lactone and that the latter is the sole species that interacts with the proteasome.
Deubiquitinating enzymes constitute a family of cysteine hydrolases that specifically cleave ubiquitin-derived substrates of general structure Ub-X, where X can be any number of leaving groups ranging from small thiols and amines to Ub and other proteins (Ub, ubiquitin). We have developed a general assay for deubiquitinating enzymes based on the substrate ubiquitin C-terminal 7-amido-4-methylcoumarin (Ub-AMC). Ub-AMC is efficiently hydrolyzed with liberation of highly fluorescent AMC by two rabbit reticulocyte deubiquitinating enzymes: isopeptidase T (IPaseT), a member of the gene family of ubiquitin-specific processing enzymes, and UCH-L3, a member of the family of ubiquitin C-terminal hydrolases. We used this new assay to probe kinetic and mechanistic aspects of catalysis by IPaseT and UCH-L3. Results from four series of experiments are discussed: (1) For UCH-L3, we determined steady-state kinetic parameters that suggest a diffusion-limited reaction of UCH-L3 with Ub-AMC. To probe this, we determined the viscosity dependence of kc/Km, as well as kc. We found complex viscosity dependencies and interpreted these in the context of a model in which association and acylation are viscosity-dependent but deacylation is viscosity-independent. (2) The kinetics of inhibition of UCH-L3 by ubiquitin C-terminal aldehyde (Ub-H) were determined and reveal a Ki that is less than 10(-14) M. Several mechanisms are considered to account for the extreme inhibition. (3) The IPaseT-catalyzed hydrolysis of Ub-AMC is modulated by Ub with activation at low [Ub] and inhibition at high [Ub]. (4) Finally, we compare kc/Km values for deubiquitinating enzyme-catalyzed hydrolysis of Ub-AMC and Z-Leu-Arg-Gly-Gly-AMC. For IPaseT, the ratio of rate constants is 10(4), while for UCH-L3 this ratio is > 10(7). These results suggest the following: (i) Deubiquitinating enzymes are able to utilize the free energy that is released from remote interactions with Ub-containing substrates for stabilization of catalytic transition states, and (ii) UCHs are more efficient at utilizing the energy from these interactions, presumably because they do not possess a binding domain for a Ub "leaving group".
The natural product lactacystin exerts its cellular antiproliferative effects through a mechanism involving acylation and inhibition of the proteasome, a cytosolic proteinase complex that is an essential component of the ubiquitin-proteasome pathway for intracellular protein degradation. In vitro, lactacystin does not react with the proteasome; rather, it undergoes a spontaneous conversion (lactonization) to the active proteasome inhibitor, clasto-lactacystin beta-lactone. We show here that when the beta-lactone is added to mammalian cells in culture, it rapidly enters the cells, where it can react with the sulfhydryl of glutathione to form a thioester adduct that is both structurally and functionally analogous to lactacystin. We call this adduct lactathione, and like lactacystin, it does not react with the proteasome, but can undergo lactonization to yield back the active beta-lactone. We have studied the kinetics of this reaction under appropriate in vitro conditions as well as the kinetics of lactathione accumulation and proteasome inhibition in cells treated with lactacystin or beta-lactone. The results indicate that only the beta-lactone (not lactacystin) can enter cells and suggest that the formation of lactathione serves to concentrate the inhibitor inside cells, providing a reservoir for prolonged release of the active beta-lactone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.