Glial cells play a pivotal role in brain fatty acid metabolism and membrane biogenesis. However, the potential regulation of lipogenesis and cholesterologenesis by fatty acids in glial cells has been barely investigated. Here, we show that physiologically relevant concentrations of various saturated, monounsaturated, and polyunsaturated fatty acids significantly reduce [1-14 C]acetate incorporation into fatty acids and cholesterol in C6 cells. Oleic acid was the most effective at depressing lipogenesis and cholesterologenesis; a decreased label incorporation into cellular palmitic, stearic, and oleic acids was detected, suggesting that an enzymatic step(s) of de novo fatty acid biosynthesis was affected. To clarify this issue, the activities of acetylcoenzyme A carboxylase (ACC) and FAS were determined with an in situ digitonin-permeabilized cell assay after incubation of C6 cells with fatty acids. ACC activity was strongly reduced (?80%) by oleic acid, whereas no significant change in FAS activity was observed. Oleic acid also reduced the activity of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR). The inhibition of ACC and HMGCR activities is corroborated by the decreases in ACC and HMGCR mRNA abundance and protein levels. The downregulation of ACC and HMGCR activities and expression by oleic acid could contribute to the reduced lipogenesis and cholesterologenesis.-Natali, F., L. Siculella, S. Salvati, and G. V. Gnoni. Oleic acid is a potent inhibitor of fatty acid and cholesterol synthesis in C6 glioma cells. J. Lipid Res. 2007Res. . 48: 1966Res. -1975. After white adipose tissue, the brain is the organ with the highest lipid content of the body. The biosynthesis and deposition of lipids play an important role in maintaining brain structure and function, for example, during development-associated biogenesis of neural cell membranes. It is well established that alterations in lipid metabolism are the cause of or are associated with many neurological diseases (1-3).Astrocytes, the major class of glial cells in the mammalian brain, play an active role in brain metabolism. These cells surround intraparenchymal blood capillaries so that they represent the first cellular barrier for nutrients and other substances entering the brain system. A metabolic coupling between astrocytes and neurons to maintain energy metabolism homeostasis has been described (4, 5). Metabolic regulation in the brain has been investigated extensively, and those studies focused mostly on carbohydrate and amino acid metabolism (for review, see Ref. 6). During neuronal activity, glucose taken up by astrocytes is converted into lactate, which is then released into the extracellular space to be used by neurons (6). Regarding lipid metabolism, astroglial ketone body synthesis, showing characteristics strikingly similar to those of hepatic ketogenesis (7), may represent an important pathway for brain energy production and/or biosynthetic processes. The involvement of fatty acids in cell death pathways, particularly in the con...
We have previously demonstrated that, in C6 glioma cells, eicosapentaenoic acid (EPA) stimulates the expression of proteolipid protein (PLP) via cAMP-mediated pathways. In this study, we investigated whether n-3 polyunsaturated fatty acids can affect myelinogenesis in vivo. A single dose of either EPA or docosahexaenoic acid (DHA) was injected intracerebroventricularly into 2-day-old rats, which were then killed after 3 days post-injection (p.i.). Total RNA was isolated from the medulla, cerebellum, and cortex, and the expression of myelin-specific mRNAs was analyzed by real-time PCR. The levels of PLP, myelin basic protein, and myelin oligodendrocyte protein mRNAs increased in nearly all brain regions of DHA- and EPA-treated animals, but the effect was more pronounced in EPA-treated rats. The enhancement in PLP transcript levels was followed by an increase in PLP translation in EPA-treated rats. A further indicator of accelerated myelination was the increase in 2'-3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) protein levels. In EPA-treated rats, the increased expression of myelin genes coincided with a decrease of cAMP-response element-binding protein (CREB)-DNA binding in the cerebellum and cortex (1 hr p.i.). After 16 hr, this effect was still present in the same cerebral regions even though the decrease in EPA-treated rats was less pronounced than in controls. The down-regulation of CREB activity was due to a decrease in the levels of CREB phosphorylation. In conclusion, our data suggest that EPA stimulates the expression of specific myelin proteins through decreased CREB phosphorylation. These results corroborate the clinical studies of the n-3 PUFA beneficial effects on several demyelinating diseases.
Gliomas, one of the most malignant forms of cancer, exhibit high resistance to conventional therapies. Identification of the molecular mechanisms responsible for this resistance is therefore of great interest to improve the efficacy of the treatments against these tumors. Delta9-Tetrahydrocannabinol (THC), the major active ingredient of marijuana, and other cannabinoids inhibit tumor growth in animal models of cancer, including glioma, an effect that relies, at least in part, on the ability of these compounds to induce apoptosis of tumor cells. By analyzing the gene expression profile of two sub-clones of C6 glioma cells with different sensitivity to cannabinoid-induced apoptosis, we found a subset of genes with a marked differential expression in the two sub-clones. Furthermore, we identified the epidermal growth factor receptor ligand amphiregulin as a candidate factor to mediate the resistance of glioma cells to cannabinoid treatment. Amphiregulin was highly overexpressed in the cannabinoid-resistant cell line, both in culture and in tumor xenografts. Moreover, in vivo silencing of amphiregulin rendered the resistant tumors xenografts sensitive to cannabinoid antitumoral action. Amphiregulin expression was associated with increased extracellular signal-regulated kinase (ERK) activation, which mediated the resistance to THC by blunting the expression of p8 and TRB3-two genes involved in cannabinoid-induced apoptosis of glioma cells. Our findings therefore identify Amphirregulin as a factor for resistance of glioma cells to THC-induced apoptosis and contribute to unraveling the molecular bases underlying the emerging notion that targeted inhibition of the EGFR pathway can improve the efficacy of antitumoral therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.