Bistable energy harvesting has become a major field of research due to some unique features for converting mechanical energy into electrical power. When properly loaded, bistable structures snap-through from one stable configuration to another, causing large strains and consequently power generation. Moreover, bistable structures can harvest energy across a broad-frequency bandwidth due to their nonlinear characteristics. Despite the fact that snapthrough may be triggered regardless of the form or frequency of exciting vibration, the external force must reach a specific snap-through activation threshold value to trigger the transition from one stable state to another. This aspect is a limiting factor for realistic vibration energy harvesting application with bistable devices. This paper presents a novel power harvesting concept for bistable composites based on a "lever effect" aimed at minimising the activation force to cause the snap through by choosing properly the bistable structures' constraints. The concept was demonstrated with the help of numerical simulation and experimental testing. The results showed that the actuation force is one order of magnitude smaller (3-6%) than the activation force of conventionally constrained bistable devices. In addition, it was shown that the output voltage was higher than the conventional configuration, leading to a significant increase in power generation. This novel concept could lead to a new generation of more efficient bistable energy harvesters for realistic vibration environments.
Adhesive bonded lap joints are widely used in the aerospace field and non-destructive testing (NDT) techniques are critical in evaluating the quality of adhesion before and during use. Two types of bonded samples have been experimentally investigated in order to verify the reliability of non-linear elastic wave spectroscopy (NEWS) based on the use of ultrasound. Piezoelectric sensors have been attached to the samples and used as generators and receivers. Both the samples have shown non-linearities in their dynamic behaviour. Non-linear metrics have been applied to their structural responses over an assigned range of excitation frequencies based on higher order harmonic analysis in order to evaluate the degree of non-linearity of the samples. Possible interpretations of the experimental behaviour are provided in the paper based also on tomographic testing of the adhesive layer that showed the presence of microbubbles in the bond due to manufacturing process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.