Different agents able to modulate apoptosis have been shown to modify the expression of the MAP-kinase-phosphatase-1 (MKP-1). The expression of this phosphatase has been considered a potential positive prognostic factor in lung cancer, and smoke was shown to reduce the levels of MKP-1 in ferret lung. Our aim was to assess whether the n-3 polyunsaturated fatty acid docosahexaenoic acid (DHA), known to inhibit the growth of several cancer cells mainly inducing apoptosis, may exert pro-apoptotic effect in lung cancer cells by modifying MKP-1 expression. We observed that DHA increased MKP-1 protein and mRNA expression and induced apoptosis in different lung cancer cell lines (mink Mv1Lu adenocarcinoma cells, human A549 adenocarcinoma and human BEN squamous carcinoma cells). We inhibited the pro-apoptotic effect of DHA by treating the cells with the phosphatase inhibitor Na(3)VO(4) or by silencing the MKP-1 gene with the specific siRNA. This finding demonstrated that the induction of apoptosis by DHA involved a phosphatase activity, specifically that of MKP-1. DHA reduced also the levels of the phosphorylated MAP-kinases, especially ERK1/2 and p38. Such an effect was not observed when the MKP-1 gene was silenced. Altogether, the data provide evidence that the DHA-induced overexpression of MKP-1 and the resulting decrease of MAP-kinase phosphorylation by DHA may underlie the pro-apoptotic effect of this fatty acid in lung cancer cells. Moreover, they support the hypothesis that DHA may exert chemopreventive action in lung cancer.
Unnatural amino acids have tremendously expanded the folding possibilities of peptides and peptide mimics. While α,α-disubstituted and β-amino acids are widely studied, γ-derivatives have been less exploited. Here we report the conformational study on the bicyclic unnatural γ amino acid, 4,5,6,6a-tetrahydro-3aH-pyrrolo[3,4-d]isoxazole-3-carboxylic acid 1. In model peptides, the (+)-(3aR6aS)-enantiomer is able to stabilize α-turn conformation when associated to glycine, as showed by 1H-NMR, FT-IR, and circular dichroism experiments, and molecular modeling studies. α-turn is a structural motif occurring in many biologically active protein sites, although its stabilization on isolated peptides is quite uncommon. Our results make the unnatural γ-amino acid 1 of particular interest for the development of bioactive peptidomimetics.
Sufficient concentration of antibiotics close to their target is key for antimicrobial action. Among the tools exploited by bacteria to reduce the internal concentration of antibiotics, multidrug efflux pumps stand out for their ability to capture and expel many unrelated compounds out of the cell. Determining the specificities and efflux efficiency of these pumps towards their substrates would provide quantitative insights into the development of antibacterial strategies. In this light, we developed a competition efflux assay on whole cells, that allows measuring the efficacy of extrusion of clinically used quinolones in populations and individual bacteria. Experiments reveal the efficient competitive action of some quinolones that restore an active concentration of other fluoroquinolones. Computational methods show how quinolones interact with the multidrug efflux transporter AcrB. Combining experiments and computations unveils a key molecular mechanism acting in vivo to detoxify bacterial cells. The developed assay can be generalized to the study of other efflux pumps.
γ-glutamyltransferase (GGT) is an enzyme that uses γ-glutamyl compounds as substrate and catalyzes their transfer into a water molecule or an acceptor substrate with varied physiologicalfunction in bacteria, plants and animals. Crystal structures of GGT are known for different species and in different states of the chemical reaction; however, structural dynamics of the substrate binding to the catalytic site of GGT is unknown. Here, we modeled Escherichia Coli GGT's glutamine binding by using a swarm of accelerated molecular dynamics (aMD) simulations. Characterization of multiple binding events identified three structural binding motifs composed of polar residues in the binding pocket that govern glutamine binding into the active site. Simulated open and closed conformations of a lid-loop protecting the binding cavity suggests its role as a gating element by allowing or blocking substrates entry into the binding pocket. Partially open states of the lid-loop are accessible within thermal fluctuations, while the estimated free energy cost of a complete open state is 2.4 kcal/mol. Our results suggest that both specific electrostatic interactions and GGT conformational dynamics dictate the molecular recognition of substrate-GGT complexes..
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.