The concept of femtocell access points underlaying existing communication infrastructure has recently emerged as a key technology that can significantly improve the coverage and performance of next-generation wireless networks. In this paper, we propose a framework for macrocell-femtocell cooperation under a closed access policy, in which a femtocell user may act as a relay for macrocell users. In return, each cooperative macrocell user grants the femtocell user a fraction of its superframe.We formulate a coalitional game with macrocell and femtocell users being the players, which can take individual and distributed decisions on whether to cooperate or not, while maximizing a utility function that captures the cooperative gains, in terms of throughput and delay. We show that the network can selforganize into a partition composed of disjoint coalitions which constitutes the recursive core of the game representing a key solution concept for coalition formation games in partition form. Simulation results show that the proposed coalition formation algorithm yields significant gains in terms of average rate per macrocell user, reaching up to 239%, relative to the non-cooperative case. Moreover, the proposed approach shows an improvement in terms of femtocell users' rate of up to 21% when compared to the traditional closed access policy.
Abstract-In this paper, we propose a novel user-cell association approach for wireless small cell networks that exploits previously unexplored context information extracted from users' devices, i.e., user equipments (UEs). Beyond characterizing precise quality of service (QoS) requirements that accurately reflect the UEs' application usage, our proposed cell association approach accounts for the devices' hardware type (e.g., smartphone, tablet, laptop). This approach has the practical benefit of enabling the small cells to make better informed cell association decisions that handle practical device-specific QoS characteristics. We formulate the problem as a matching game between small cell base stations (SBSs) and UEs. In this game, the SBSs and UEs rank one another based on well-designed utility functions that capture composite QoS requirements, extracted from the context features (i.e., application in use, hardware type). We show that the preferences used by the nodes to rank one another are interdependent and influenced by the existing network-wide matching. Due to this unique feature of the preferences, we show that the proposed game can be classified as a many-to-one matching game with externalities. To solve this game, we propose a distributed algorithm that enables the players (i.e., UEs and SBSs) to self-organize into a stable matching that guarantees the required applications' QoS. Simulation results show that the proposed context-aware cell association scheme yields significant gains, reaching up to 52% improvement compared to baseline context-unaware approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.