Immunologic studies were performed in 83 patients with Down's Syndrome (DS) in ages ranging from a few months to 30 years and 76 karyotypically normal age-matched controls. The results show that both thymus-dependent and independent functions were impaired in DS with a characteristic age sequence. Serum immunoglobulin levels were normal in children with DS less then 5 years old; after 6 years of age a definite hyperglobulinemia of the IgG and IgA type was observed. A slight decrease in IgM was observed between 16 and 25 years of age. In subjects with DS lymphocyte phytohemagglutinin responsiveness was in the normal range during the first decade but it decreased thereafter progressively; the percentage and absolute number of peripheral blood lymphocytes forming "spontaneous rosettes" with sheep erythrocytes were abnormally low at all ages including infancy; the number of circulating lymphocytes with a high density of surface immunoglobulins was always in the normal range.
Summary
An investigation of 22 new patients with Shwachman‐Diamond syndrome (SDS) and the follow‐up of 14 previously reported cases showed that (i) clonal chromosome changes of chromosomes 7 and 20 were present in the bone marrow (BM) of 16 out of 36 cases, but if non‐clonal changes were taken into account, the frequency of anomalies affecting these chromosomes was 20/36: a specific SDS karyotype instability was thus confirmed; (ii) the recurrent isochromosome i(7)(q10) did not include short arm material, whereas it retained two arrays of D7Z1 alphoid sequences; (iii) the deletion del(20)(q11) involved the minimal region of deletion typical of myelodysplastic syndromes (MDS) and acute myeloid leukaemia (AML); (iv) only one patient developed MDS, during the rapid expansion of a BM clone with a chromosome 7 carrying additional material on the short arms; (v) the acquisition of BM clonal chromosome anomalies was age‐related. We conclude that karyotype instability is part of the natural history of SDS through a specific mutator effect, linked to lacking SBDS protein, with consequent clonal anomalies of chromosomes 7 and 20 in BM, which may eventually promote MDS/AML with the patients’ ageing.
The HeLa cell line is one of the most popular cell lines in biomedical research, despite its well-known chromosomal instability. We compared the genomic and transcriptomic profiles of 4 different HeLa batches and showed that the gain and loss of genomic material varies widely between batches, drastically affecting basal gene expression. Moreover, different pathways were activated in response to a hypoxic stimulus. Our study emphasizes the large genomic and transcriptomic variability among different batches, to the point that the same experiment performed with different batches can lead to distinct conclusions and irreproducible results. The HeLa cell line is thought to be a unique cell line but it is clear that substantial differences between the primary tumour and the human genome exist and that an indeterminate number of HeLa cell lines may exist, each with a unique genomic profile.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.