Forecasting assets’ prices is the aim of each trader, although the trading approaches employed may vary a lot. The development of machine learning techniques has brought the opportunity to design mechanic trading systems based on dynamic artificial neural networks. The aim of this paper is to combine traditional technical indicators [such as exponential weighted moving average (EWMA), percentage volume oscillator (PVO) and stochastic indicator — %K and %D] with the nonlinear autoregressive networks (NAR and NARX). The first part of the paper describes how neural networks designed for forecasting time series work, the second one performs a deeper validation of the code and the third one combines the dynamic networks with traditional technical indicators in order to generate reliable mechanic signals. The article ends with a back testing of the trading system performed on Dow Jones Industrial Average and on Nasdaq Composite Indexes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.