The aim of this study was to assess the role of TLR2, TLR4 and MyD88 accessory molecule in the effector and secretory response of macrophages to viable microbial agents. Using TLR-deleted macrophage cell lines generated from the bone marrow of genetically engineered mice (TLR4 gene-deficient, MyD88- and TLR2-knockout mice) and wild-type control mice, we found that TLR2-deleted macrophages exhibit increased ability to contain Candida albicans infection compared to TLR2+/+ counterpart. In contrast, both MyD88-/- and TLR4-/- macrophages retain levels of functional activity comparable to that of the respective wild-type MyD88+/+ and TLR4+/+ controls. The difference in anticandidal effector functions observed between TLR2-/- and TLR2+/+ macrophages is abrogated upon opsonization of the fungal target and interestingly is not observed when using other microbial targets, such as Streptococcus pneumoniae and Helicobacter pylori. When tested for secretory response to C. albicans, TLR2-deleted macrophages show a pattern of cytokine production similar to that of TLR2+/+ controls. Finally, flow cytometry analysis reveals that TLR2-deleted macrophages express only TLR4, while, as expected, TLR2+/+ macrophages are both TLR2 and TLR4 positive; in no cases, modulation of such markers occurs in macrophages exposed to C. albicans infection. In conclusion, these data indicate that TLR2 and TLR4 have different biological relevance, in which TLR2 but not TLR4, is involved in the accomplishment of macrophage-mediated anticandidal activity, while the secretory response to C. albicans appears to be TLR4 but not TLR2-dependent.
Human SH-SY5Y neuroblastoma cells are widely utilized in in vitro studies to dissect out pathogenetic mechanisms of neurodegenerative disorders. These cells are considered as neuronal precursors and differentiate into more mature neuronal phenotypes under selected growth conditions. In this study, in order to decipher the pathways and cellular processes underlying neuroblastoma cell differentiation in vitro, we performed systematic transcriptomic (RNA-seq) and bioinformatic analysis of SH-SY5Y cells differentiated according to a two-step paradigm: retinoic acid treatment followed by enriched neurobasal medium. Categorization of 1989 differentially expressed genes (DEGs) identified in differentiated cells functionally linked them to changes in cell morphology including remodelling of plasma membrane and cytoskeleton, and neuritogenesis. Seventy-three DEGs were assigned to axonal guidance signalling pathway, and the expression of selected gene products such as neurotrophin receptors, the functionally related SLITRK6, and semaphorins, was validated by immunoblotting. Along with these findings, the differentiated cells exhibited an ability to elongate longer axonal process as assessed by the neuronal cytoskeletal markers biochemical characterization and morphometric evaluation. Recognition of molecular events occurring in differentiated SH-SY5Y cells is critical to accurately interpret the cellular responses to specific stimuli in studies on disease pathogenesis.
BackgroundTo review the descriptive epidemiological data on neuronal ceroid lipofuscinoses (NCLs) in Italy, identify the spectrum of mutations in the causative genes, and analyze possible genotype-phenotype relations.MethodsA cohort of NCL patients was recruited through CLNet, a nationwide network of child neurology units. Diagnosis was based on clinical and pathological criteria following ultrastructural investigation of peripheral tissues. Molecular confirmation was obtained during the diagnostic procedure or, when possible, retrospectively.ResultsOne hundred eighty-three NCL patients from 156 families were recruited between 1966 and 2010; 124 of these patients (from 88 families) were tested for known NCL genes, with 9.7% of the patients in this sample having not a genetic diagnosis. Late infantile onset NCL (LINCL) accounted for 75.8% of molecularly confirmed cases, the most frequent form being secondary to mutations in CLN2 (23.5%). Juvenile onset NCL patients accounted for 17.7% of this cohort, a smaller proportion than found in other European countries. Gene mutations predicted severe protein alterations in 65.5% of the CLN2 and 78.6% of the CLN7 cases. An incidence rate of 0.98/100,000 live births was found in 69 NCL patients born between 1992 and 2004, predicting 5 new cases a year. Prevalence was 1.2/1,000,000.ConclusionsDescriptive epidemiology data indicate a lower incidence of NCLs in Italy as compared to other European countries. A relatively high number of private mutations affecting all NCL genes might explain the genetic heterogeneity. Specific gene mutations were associated with severe clinical courses in selected NCL forms only.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.