The effects of processing conditions on appearance characteristics of injection-molded mineral-filled polypropylene (compounded with pigments giving differing intensities of a beige color) have been studied; characteristics studied included gloss, color, and texture. A mold cavity embossed with smooth, fine, and coarse surface patterns was used. In-mold rheology and gateseal analysis were used to select the filling and postfilling processing parameters. Interest was focused on the effects of filling rate, holding pressure, and mold temperature on the appearance characteristics, and a significant influence of these processing conditions on the gloss and color was found. For all the surface patterns examined, a better replication of the mold texture was obtained with a low melt viscosity at a high shear rate (high injection speed or short injection time) and a high mold temperature. This gave a higher gloss in the smooth surface regions and a lower gloss in the textured regions. An increase in the holding pressure had an effect similar to but smaller than increasing the filling rate or mold temperature. The gloss (or surface topography) had a significant effect on the color; an increase in gloss was associated with an increase in the color coordinate b* and a decrease in the lightness L*. POLYM. ., 45:1557-1567, 2005. ENG. SCI
In our recent work, it was shown that the rate of filling during injection moulding did not significantly affect the tensile and impact properties of recovered and virgin polypropylene, whereas significant changes in the properties were observed after ageing at 100 °C. The purpose of the present work was to extend the former study to include the effects of processing and ageing on surface-appearance-related properties, in particular the gloss. In-mould rheology and gate-seal analyses were performed in order to select the filling and post-filling processing windows, respectively. The influences of filling rate, holding and cooling times on the gloss measured in the gate area and at the far end of the moulded specimens were evaluated. The mould used had an embossed surface giving test plaques with a matte appearance. The results showed that the gloss varied by about 30 to 40% within the filling window obtained by in-mould rheology. The slight gloss difference between the two PP-grades noted at the lowest injection speed vanished with increasing filling rate. Gloss differences were observed between the gate area and the far end of each processed moulding, again at the lowest injection speed. The materials processed at a high filling rate exhibited a fairly constant gloss as the holding time increased regardless of the position of the analysed region, whereas a more significant decrease was noted in the case of the mouldings processed at the low filling rate. The cooling time had a negligible effect on the gloss in comparison to the effect of filling rate. Ageing at 100 °C for 240 h increased the gloss level, especially at the far end of the moulding, but only for specimens manufactured at the lowest filling rate. Roughness measurements with a profilometer showed that the gloss development during processing and ageing was related to the topographical matching between the developing polymer surface and the mould topography.
Shortly after processing, Polyethylene/Polypropylene (PE/PP) multilayer films demonstrate an increase in tensile modulus and other mechanical properties when the individual layer thickness is below 0.5 mm. Subsequent annealing at 60 8C for 16 h brings the properties of all other samples to similar values. WAXD characterization of the layered films identified a prevalence of mesophase in the thicker PP layers. In samples with increased layer numerosity or subjected to annealing, WAXD detected its conversion to a crystalline phase that correlates with improved mechanical properties. SSNMR and DSC detailed the defective nature of a iPP crystallites. Comonomers, detected by NMR in the commercial polymers used for the films, are the source of "tunable disorder" that dictates the formation of the PP mesophase and the low temperature of conversion to the mechanically stronger defective a phase. Soft intrafilm layer interfaces instead enable nucleation and localized polymer chain rearrangement even without annealing.
The purpose of this study was to provide experimental evidence of the separation of the polymer components at different scales during conventional processing. This was achieved by characterizing the surface and the bulk (cross section) of moldings manufactured with a high-flow grade and a low-flow grade of commercial polystyrene by the time-of-flight secondary ion mass spectrometry (TOF-SIMS) analytical technique. Owing to the geometric constraints of the mold used, a weld was also obtained. Different surface spectra were observed for the two molded polystyrenes. The surface of the high-flow grade moldings showed the spectral features of lowmolar polyolefin (parafEn) contaminants, whereas the bulk was dominated by polystyrene. Spectra from both the surface and the bulk of the low-flow grade moldings were characteristic of polystyrene. Mold-filling effects on the surface composition were observed in the flow front region of molded short-shots of the low-flow grade. The spectral changes indicated the abundance, in the surface, of the high end of the molar-mass distribution of the material during the mold filling process. Twodimensional maps of the secondary ions from the low-flow grade also showed an occasional alkali contamination, preferentially along the notch of the weld.
The simulation of the advancing flow front during mould filling in the injection moulding cycle is important as a way of anticipating manufacturing defects, particularly different types of welds, air traps, cold spots and hot spots. The purpose of the present work was to evaluate a model (the distance model) simulating the advancing flow front and predicting potential issues related to the progression of the flow front such as welds and air traps. The distance model is based on a mathematical theory of Hele-Shaw flow for strongly shear-thinning fluids, i. e. fluids with a power-law index, n, equal to 0,3 or preferably less. Two grades of general-purpose polystyrene were selected according to their abilities to shear thin (weakly or moderately strong) at the selected processing temperature and in the typical shear rate range of the injection moulding process. The two grades were injection moulded into twelve mould configurations derived from two similar single-gated moulds. The flow length from the gate to the weld was measured in the mouldings obtained at three distinct rates of filling (conventional, slower and faster) and compared to the flow lengths obtained by the distance model. Good agreement was found between the predicted flow lengths and the experimental flow lengths at the conventional and faster filling conditions. Larger deviations between simulation and experiment were found at the slower filling rate, particularly for the weakly shear-thinning polystyrene grade. Some comparisons were also made with the predictions obtained using the commercial simulation code Moldflow. A comparison between the advancing front predictions of the distance model and experimental short shots of a commercial polypropylene grade in a lure-box type of mould geometry showed that the distance model, despite its simplicity, could probably be used to detect welds and air traps in more complex and practice-related mouldings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.