C. canimorsus 5 has the capacity to grow at the expenses of glycan moieties from host cells N-glycoproteins. Here, we show that C. canimorsus 5 also has the capacity to deglycosylate human IgG and we analyze the deglycosylation mechanism. We show that deglycosylation is achieved by a large complex spanning the outer membrane and consisting of the Gpd proteins and sialidase SiaC. GpdD, -G, -E and -F are surface-exposed outer membrane lipoproteins. GpdDEF could contribute to the binding of glycoproteins at the bacterial surface while GpdG is a endo-β-N-acetylglucosaminidase cleaving the N-linked oligosaccharide after the first N-linked GlcNAc residue. GpdC, resembling a TonB-dependent OM transporter is presumed to import the oligosaccharide into the periplasm after its cleavage from the glycoprotein. The terminal sialic acid residue of the oligosaccharide is then removed by SiaC, a periplasm-exposed lipoprotein in direct contact with GpdC. Finally, most likely degradation of the oligosaccharide proceeds sequentially from the desialylated non reducing end by the action of periplasmic exoglycosidases, including β-galactosidases, β-N-Acetylhexosaminidases and α-mannosidases.
Capnocytophaga canimorsus is a dog oral commensal that causes rare but severe infections in humans. C. canimorsus was recently shown to be endowed with a capsular polysaccharide implicated in resistance to the innate immune system of the host. Here, we developed the first C. canimorsus capsular serotyping scheme. We describe nine different serovars (A to I), and this serotyping scheme allowed typing of 25/25 isolates from human infections but only 18/52 isolates from dog mouths, indicating that the repertoire of capsules in the species is vast. However, while only three serovars (A, B, and C) covered 88% of the human isolates tested (22/25), they covered only 7.7% of the dog isolates (4/52). Serovars A, B, and C were found 22.9-, 14.6-, and 4.2-fold more often, respectively, among human isolates than among dog isolates, with no geographical bias, implying that isolates endowed with these three capsular types are more virulent for humans than other isolates. Capsular serotyping would thus allow identification of virulent isolates in dogs, which could contribute to the prevention of these infections. To this end, we developed a PCR typing method based on the amplification of specific capsular genes.
SummaryCapnocytophaga canimorsus are commensal Gramnegative bacteria from dog's mouth that cause rare but dramatic septicaemia in humans. C. canimorsus have the unusual property to feed on cultured mammalian cells, including phagocytes, by harvesting the glycan moiety of cellular glycoproteins. To understand the mechanism behind this unusual property, the genome of strain Cc5 was sequenced and analysed. In addition, Cc5 bacteria were cultivated onto HEK 293 cells and the surface proteome was determined. The genome was found to encode many lipoproteins encoded within 13 polysaccharide utilization loci (PULs) typical of the FlavobacteriaBacteroides group. PULs encode surface exposed feeding complexes resembling the archetypal starch utilization system (Sus). The products of at least nine PULs were detected among the surface proteome and eight of them represented more than half of the total peptides detected from the surface proteome. Systematic deletions of the 13 PULs revealed that half of these Sus-like complexes contributed to growth on animal cells. The complex encoded by PUL5, one of the most abundant ones, was involved in foraging glycans from glycoproteins. It was essential for growth on cells and contributed to survival in mice. It thus represents a fitness factor during infection.
Capnocytophaga canimorsus are gram-negative bacteria living as commensals in the mouth of dogs and cats. C. canimorsus cause rare but life-threatening generalized infections in humans that have been in contact with a dog or a cat. Over the last years we collected 105 C. canimorsus strains from different geographical origins and from severe human infections or healthy dogs. All these strains were analyzed by 16S rDNA sequencing and a phylogenetic tree revealed two main groups of bacteria instead of one with no relation to the geographical origin. This branching was confirmed by the whole-genome sequencing of 10 strains, supporting the evidence of a new Capnocytophaga species in dogs. Interestingly, 19 out of 19 C. canimorsus strains isolated from human infections belonged to the same species. Furthermore, most strains from this species could grow in heat-inactivated human serum (HIHS) (40/46 tested), deglycosylate IgM (48/66) and were cytochrome-oxidase positive (60/66) while most strains from the other species could not grow in HIHS (22/23 tested), could not deglycosylate IgM (33/34) and were cytochrome-oxidase negative (33/34). Here, we propose to call Capnocytophaga canis (Latin: dog) the novel, presumably less virulent dog-hosted Capnocytophaga species and to keep the name C. canimorsus for the species including human pathogens.
Capnocytophaga canimorsus is a dog’s and cat’s oral commensal which can cause fatal human infections upon bites or scratches. Infections mainly start with flu-like symptoms but can rapidly evolve in fatal septicaemia with a mortality as high as 40%. Here we present the discovery of a polysaccharide capsule (CPS) at the surface of C. canimorsus 5 (Cc5), a strain isolated from a fulminant septicaemia. We provide genetic and chemical data showing that this capsule is related to the lipooligosaccharide (LOS) and probably composed of the same polysaccharide units. A CPS was also found in nine out of nine other strains of C. canimorsus. In addition, the genomes of three of these strains, sequenced previously, contain genes similar to those encoding CPS biosynthesis in Cc5. Thus, the presence of a CPS is likely to be a common property of C. canimorsus. The CPS and not the LOS confers protection against the bactericidal effect of human serum and phagocytosis by macrophages. An antiserum raised against the capsule increased the killing of C. canimorsus by human serum thus showing that anti-capsule antibodies have a protective role. These findings provide a new major element in the understanding of the pathogenesis of C. canimorsus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.