Understanding the determinants of virus transmission is a fundamental step for effective design of screening and intervention strategies to control viral epidemics. Phylogenetic analysis can be a valid approach for the identification of transmission chains, and very-large data sets can be analysed through parallel computation. Here we propose and validate a new methodology for the partition of large-scale phylogenies and the inference of transmission clusters. This approach, on the basis of a depth-first search algorithm, conjugates the evaluation of node reliability, tree topology and patristic distance analysis. The method has been applied to identify transmission clusters of a phylogeny of 11,541 human immunodeficiency virus-1 subtype B pol gene sequences from a large Italian cohort. Molecular transmission chains were characterized by means of different clinical/demographic factors, such as the interaction between male homosexuals and male heterosexuals. Our method takes an advantage of a flexible notion of transmission cluster and can become a general framework to analyse other epidemics.
Targeting a host factor essential for the replication of different viruses but not for the cells offers a higher genetic barrier to the development of resistance, may simplify therapy regimens for coinfections, and facilitates management of emerging viral diseases. DEADbox polypeptide 3 (DDX3) is a human host factor required for the replication of several DNA and RNA viruses, including some of the most challenging human pathogens currently circulating, such as HIV-1, Hepatitis C virus, Dengue virus, and West Nile virus. Herein, we showed for the first time, to our knowledge, that the inhibition of DDX3 by a small molecule could be successfully exploited for the development of a broad spectrum antiviral agent. In addition to the multiple antiviral activities, hit compound 16d retained full activity against drug-resistant HIV-1 strains in the absence of cellular toxicity. Pharmacokinetics and toxicity studies in rats confirmed a good safety profile and bioavailability of 16d. Thus, DDX3 is here validated as a valuable therapeutic target.broad spectrum antivirals | DDX3 | host factors | resistance | coinfections
Introduction : The current SARS-CoV-2 pandemic urgently demands for both prevention and treatment strategies. RNA-dependent RNA-polymerase (RdRp), which has no counterpart in human cells, is an excellent target for drug development. Given the time-consuming process of drug development, repurposing drugs approved for other indications or at least successfully tested in terms of safety and tolerability, is an attractive strategy to rapidly provide an effective medication for severe COVID-19 cases. Areas covered : The currently available data and upcoming studies on RdRp which can be repurposed to halt SARS-CoV-2 replication, are reviewed. Expert opinion : Drug repurposing and design of novel compounds are proceeding in parallel to provide a quick response and new specific drugs, respectively. Notably, the proofreading SARS-CoV-2 exonuclease activity could limit the potential for drugs designed as immediate chain terminators and favor the development of compounds acting through delayed termination. While vaccination is awaited to curb the SARS-CoV-2 epidemic, even partially effective drugs from repurposing strategies can be of help to treat severe cases of disease. Considering the high conservation of RdRp among coronaviruses, an improved knowledge of its activity in vitro can provide useful information for drug development or drug repurposing to combat SARS-CoV-2 as well as future pandemics.
The RNA-dependent RNA polymerase (RdRp) is an essential enzyme for the viral replication process, catalyzing the viral RNA synthesis using a metal ion-dependent mechanism. In recent years, RdRp has emerged as an optimal target for the development of antiviral drugs, as demonstrated by recent approvals of sofosbuvir and remdesivir against Hepatitis C virus (HCV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), respectively. In this work, we overview the main sequence and structural features of the RdRp of emerging RNA viruses such as Coronaviruses, Flaviviruses, and HCV, as well as inhibition strategies implemented so far. While analyzing the structural information available on the RdRp of emerging RNA viruses, we provide examples of success stories such as for HCV and SARS-CoV-2. In contrast, Flaviviruses’ story has raised attention about how the lack of structural details on catalytically-competent or ligand-bound RdRp strongly hampers the application of structure-based drug design, either in repurposing and conventional approaches.
BackgroundHIV-1 non-B subtypes have recently entered Western Europe following immigration from other regions. The distribution of non-B clades and their association with demographic factors, over the entire course of the HIV-1 epidemic, have not been fully investigated in Italy. MethodsWe carried out a phylogenetic analysis of HIV-1 pol sequences derived from 3670 patients followed at 50 Italian clinical centres over nearly three decades. ResultsOverall, 417 patients (11.4%) carried non-B subtypes. The prevalence of non-B strains increased from 2.6% in 1980 -1992 to 18.9% in 1993) in a subset of 2479 subjects with a known year of diagnosis. A multivariate analysis on a subset of 1364 patients for whom relevant demographic data were available indicated that African ethnicity, heterosexual route of infection and year of diagnosis were independently associated with non-B HIV-1 infection (P 0.0001). All pure subtypes, except for clade K, and seven circulating recombinant forms were detected, accounting for 56.6 and 34.1% of the non-B infections, respectively. The F1 subtype was the most prevalent non-B clade among Europeans and was acquired heterosexually in half of this patient population. Unique recombinant forms accounted for 9.4% of the non-B sequences and showed a B/F1 recombination pattern in one-third of cases. ConclusionsThe circulation of non-B clades has significantly increased in Italy in association with demographic changes. Spread of the F1 subtype and B/F recombinants appears to predominate, which may result in a redistribution of the relative proportions of the different strains, and this could lead to overlapping epidemics. Thus, the HIV-1 landscape in Italy may in future be distinct from that of the rest of Europe. IntroductionNine discrete lineages of group M HIV-1 (A-D, F-H, J and K) have differentiated during the global pandemic as a result of massive virus replication, the very high error rate of reverse transcriptase (RT) and the selective pressure exerted by the immune system. The highly recombinogenic activity of HIV-1 RT has added further complexity to the global diversity of HIV-1 as 43 circulating recombinant forms (CRFs) have already been characterized and a number of unique recombinant forms (URFs) have been identified world-wide [1][2][3]. Most subtypes and CRFs were originally restricted to specific geographical regions or populations, but their distribution is constantly evolving [4]. In order to monitor the evolution of the global pandemic, it is convenient and effective to assign viral clades, which allow evaluation of the local epidemiological trends that result from social changes and migration flows. [6][7][8][9][10][11][12][13]. The recent epidemiology of HIV-1 infection in Western European countries with large immigrant communities has been characterized by increasing genetic diversity and a marked rise in non-B subtype strains among newly diagnosed individuals [14][15][16][17]. It has been assumed that most non-B subtype infections in Western Europe are linked to migration ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.