Copper is a transition metal that can exist in oxidized (Cu(II)) and reduced (Cu(I)) states. This allows it to participate in redox and catalytic chemistry, making it a suitable cofactor for a diverse range of enzymes and molecules. Copper complexes have been investigated for their therapeutic or diagnostic potential showing effectiveness in cancer treatment due to their cytotoxic action on tumour cells. In this review, the most remarkable achievements in the design and development of copper(I, II) complexes as antitumor agents are discussed. Special emphasis has been focused on the identification of structure-activity relationships for the different classes of complexes. Up to now, despite the enormous efforts in synthesizing different classes of copper complexes, very few data concerning the molecular basis of the mechanisms underlying their antitumor activity are available. The current overview, collecting the most significant strategies adopted in the last four years to design promising anticancer copper(I,II) compounds, aims to provide a useful reference for researchers working in this field
Copper is found in all living organisms and is a crucial trace element in redox chemistry, growth and development. It is important for the function of several enzymes and proteins involved in energy metabolism, respiration, and DNA synthesis, notably cytochrome oxidase, superoxide dismutase, ascorbate oxidase, and tyrosinase. The major functions of copper-biological molecules involve oxidation-reduction reactions in which they react directly with molecular oxygen to produce free radicals. Therefore, copper requires tightly regulated homeostatic mechanisms to ensure adequate supplies without any toxic effects. Overload or deficiency of copper is associated, respectively, with Wilson disease (WD) and Menkes disease (MD), which are of genetic origin. Researches on Menkes and Wilson disorders have provided useful insights in the field of copper homeostasis and in particular into the understanding of intracellular trafficking and distribution of copper at molecular levels. Therapies based on metal supplementation with copper histidine or removal of copper excess by means of specific copper chelators are currently effective in treating MD and WD, respectively. Copper chelation therapy is now attracting much attention for the investigation and treatment of various neurodegenerative disorders such as Alzheimer, Parkinson and CreutzfeldtJakob. An excess of copper appears to be an essential co-factor for angiogenesis. Moreover, elevated levels of copper have been found in many types of human cancers, including prostate, breast, colon, lung, and brain. On these basis, the employment of copper chelators has been reported to be of therapeutic value in the treatment of several types of cancers as anti-angiogenic molecules. More recently, mixtures of copper chelators with copper salts have been found to act as efficient proteasome inhibitors and apoptosis inducers, specifically in cancer cells. Moreover, following the worldwide success of platinum(II) compounds in cancer chemotherapy, several families of individual copper complexes have been studied as potential antitumor agents. These investigations, revealing the occurrence of mechanisms of action quite different from platinum drugs, head toward the development of new anticancer metallodrugs with improved specificity and decreased toxic side effects.
Metal-based antitumor drugs play a relevant role in antiblastic chemotherapy. Cisplatin is regarded as one of the most effective drugs, even if severe toxicities and drug resistance phenomena limit its clinical use. Therefore, in recent years there has been a rapid expansion in research and development of novel metal-based anticancer drugs to improve clinical effectiveness, to reduce general toxicity and to broaden the spectrum of activity. The variety of metal ion functions in biology has stimulated the development of new metallodrugs other than Pt drugs with the aim to obtain compounds acting via alternative mechanisms of action. Among non-Pt compounds, copper complexes are potentially attractive as anticancer agents. Actually, since many years a lot of researches have actively investigated copper compounds based on the assumption proposal that endogenous metals may be less toxic. It has been established that the properties of copper-coordinated compounds are largely determined by the nature of ligands and donor atoms bound to the metal ion. In this review, the most remarkable achievements in the design and development of copper(I, II) complexes as antitumor agents are discussed. Special emphasis has been focused on the identification of structure-activity relationships for the different classes of copper(I,II) complexes. This work was motivated by the observation that no comprehensive surveys of copper complexes as anticancer agents were available in the literature. Moreover, up to now, despite the enormous efforts in synthesizing different classes of copper complexes, very few data concerning the molecular basis of the mechanisms underlying their antitumor activity are available. This overview, collecting the most significant strategies adopted in the last ten years to design promising anticancer copper(I,II) compounds, would be a help to the researchers working in this field.
The thioredoxin system, composed of thioredoxin reductase (TrxR), thioredoxin (Trx), and NADPH (Nicotinamide adenine dinucleotide compounds were found to induce antiproliferative effects towards several human cancer cells some of which endowed with cisplatin or multidrug resistance. In addition, they were able to activate caspase-3 and induce apoptosis observed as nucleosome formation and sub-G1 cell accumulation. The complexes with thiocyanate and xanthate ligands were particularly effective in inhibiting thioredoxin reductase and inducing apoptosis.Pharmacodynamic studies in human ovarian cancer cells allowed for the correlatation of intracellular drug accumulation with TrxR inhibition that leads to the induction of apoptosis via the mitochondrial pathway.
Monocationic hydrophilic complexes [Cu(thp)4](+) 3 and [Cu(bhpe)2](+) 4 were synthesized by ligand exchange reactions starting from the labile [Cu(CH3CN)4][PF6] precursor in the presence of an excess of the relevant hydrophilic phosphine. Complexes 3 and 4 were tested against a panel of several human tumor cell lines. Complex 3 has been shown to be about 1 order of magnitude more cytotoxic than cisplatin. Chemosensitivity tests performed on cisplatin and multidrug resistance phenotypes suggested that complex 3 acts via a different mechanism of action than the reference drug. Different short-term proliferation assays suggested that lysosomal damage is an early cellular event associated with complex 3 cytotoxicity, probably mediated by an increased production of reactive oxygen species. Cytological stains and flow cytometric analyses indicated that the phosphine copper(I) complex is able to inhibit the growth of tumor cells via G2/M cell cycle arrest and paraptosis accompanied with the loss of mitochondrial transmembrane potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.