We introduce Constr-DRKM, a deep kernel method for the unsupervised learning of disentangled data representations. We propose augmenting the original deep restricted kernel machine formulation for kernel PCA by orthogonality constraints on the latent variables to promote disentanglement and to make it possible to carry out optimization without first defining a stabilized objective. After illustrating an end-to-end training procedure based on a quadratic penalty optimization algorithm with warm start, we quantitatively evaluate the proposed method's effectiveness in disentangled feature learning. We demonstrate on four benchmark datasets that this approach performs similarly overall to β-VAE on a number of disentanglement metrics when few training points are available, while being less sensitive to randomness and hyperparameter selection than β-VAE. We also present a deterministic initialization of Constr-DRKM's training algorithm that significantly improves the reproducibility of the results. Finally, we empirically evaluate and discuss the role of the number of layers in the proposed methodology, examining the influence of each principal component in every layer and showing that components in lower layers act as local feature detectors capturing the broad trends of the data distribution, while components in deeper layers use the representation learned by previous layers and more accurately reproduce higher-level features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.