This study examines the use of an aggregation-induced enhanced emission fluorophore (TPE-MRh) to prepare red-emitting luminescent solar concentrators (LSCs) based on poly(methyl methacrylate) (PMMA) and poly(cyclohexyl methacrylate) (PCMA). TPE-MRh is a tetraphenylethylene (TPE) derivative bearing two dimethylamino push groups and a 3-methyl-rhodanine pull moiety, with absorption maxima at around 500 nm and fluorescence peak at 700 nm that strongly increases in solid-state. TPE-MRh displays a typical crystallizationinduced enhanced emission that has been rationalized by modeling the compound behavior in solution and solid-state via density functional theory calculations with the inclusion of the environment. TPE-MRh dispersed into 5 × 5 cm 2 polymer films with a thickness of 25 ± 5 μm has revealed a partial fluorescence quenching with fluorophore content. Quantum yields (QYs) below 10% for the 2 wt.% of doping have been addressed to the formation of less emissive micro-sized clusters of fluorophores. PMMA slabs with the same surface size but 3 mm of thickness and 200 ppm of TPE-MRh have provided QY of 36.5% thanks to the attenuation of the detrimental effects of fluorophore aggregation. This feature is reflected in the LSCs performance, with devices achieving the largest power collected by the photovoltaic cell.
Organic fluorophores have found broad application as emitters in luminescent solar concentrators (LSCs) for silicon photovoltaics. In particular, the preparation of organic conjugated systems with intense light-harvesting ability, emissions in the deep-red and NIR regions, and large Stokes shift values represent a very challenging undertaking. Here, we report a simple and easy way to prepare three symmetrical donor–acceptor–donor (DAD) organic-emitting materials based on a thienopyrazine core. The central core in the three dyes was modified with the introduction of aromatic substituents, aiming to affect their optical properties. The fluorophores were characterized by spectroscopic studies. In all cases, visible-NIR emissions with large Stokes shifts were found, highlighting these molecules as promising materials for the application in LSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.