Containment measures have been applied throughout the world to halt the COVID-19 pandemic. In the United States, several forms of lockdown have been adopted in different parts of the country, leading to heterogeneous epidemiological, social, and economic effects. Here, we present a spatio-temporal analysis of a Twitter dataset comprising 1.3 million geo-localized Tweets about lockdown, from January to May 2020. Through sentiment analysis, we classified Tweets as expressing positive or negative emotions about lockdown, demonstrating a change in perception during the course of the pandemic modulated by socio-economic factors. A transfer entropy analysis of the time series of Tweets unveiled that the emotions in different parts of the country did not evolve independently. Rather, they were mediated by spatial interactions, which were also related to socio-ecomomic factors and, arguably, to political orientations. This study constitutes a first, necessary step toward isolating the mechanisms underlying the acceptance of public health interventions from highly resolved online datasets.
Many complex systems are characterized by time-varying patterns of interactions. These interactions comprise strong ties, driven by dyadic relationships, and weak ties, based on node-specific attributes. The interplay between strong and weak ties plays an important role on dynamical processes that could unfold on complex systems. However, seldom do we have access to precise information about the time-varying topology of interaction patterns. A particularly elusive question is to distinguish strong from weak ties, on the basis of the sole node dynamics. Building upon analytical results, we propose a statistically-principled algorithm to reconstruct the backbone of strong ties from data of a spreading process, consisting of the time series of individuals' states. Our method is numerically validated over a range of synthetic datasets, encapsulating salient features of real-world systems. Motivated by compelling evidence, we propose the integration of our algorithm in a targeted immunization strategy that prioritizes influential nodes in the inferred backbone. Through Monte Carlo simulations on synthetic networks and a real-world case study, we demonstrate the viability of our approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.