Interfacial interactions between conjugated polymers and carbon nanotubes are pivotal in determining the device performance of nanotube-based polymer electronic devices. Here, we report on interfacial structures and crystallization kinetics of poly(3-hexylthiophene) (P3HT) in the presence of single-walled carbon nanotubes (SWNTs) in anisole by means of transmission electron microscope (TEM) and ultraviolet-visible (UV-vis) absorption spectroscopy. Confined on SWNT surfaces, the P3HT forms nanofibril crystals perpendicular to the long axis of SWNTs. The equilibrium dissolution temperature of the P3HT crystals in anisole is determined to be 381 ± 10 K according to the Hoffman-Weeks extrapolation approach. Upon cooling, the polymer solution spontaneously undergoes a time-dependent chromism. Various kinetics factors such as crystallization temperature, concentration, and SWNT loading have been investigated. It is found that the growth rate (G) of the crystals scales with concentration (C) as G ∝ C(1.70±0.16). The Avrami model is utilized to analyze the nucleation mechanism and the Avrami exponents vary between 1.0 and 1.3. The Lauritzen-Hoffman theory is applied to study the chain-folding process. The fold surface free energy is calculated to be (5.28-11.9) × 10(-2) J m(-2). It is evident that the addition of 0.30 wt % SWNTs reduces the fold surface free energy by 55.6%.
The sol–gel transition of conductive nanocomposites consisting of poly(3-hexylthiophene) (P3HT) and ZnO nanowires in o-dichlorobenzene (o-DCB) has been investigated rheologically. The physical gelation of P3HT in o-DCB spontaneously occurs upon adding the small amount of ZnO nanowires. The rheological properties of the P3HT/ZnO nanocomposite gels have been systematically studied by varying factors such as polymer concentration, nanowire loading, and temperature. The nanocomposite gel exhibits shear-thinning in the low shear rate range and shear-thickening in the high shear rate range. The elastic storage modulus of the nanocomposite gel gradually increases with gelation time and is consistently independent of frequency at all investigated ranges. The isothermal gelation kinetics has been analyzed by monitoring the storage modulus with gelation time, and the data are well fitted with a first-order rate law. The structural analysis data reveal that the polymer forms the crystalline layer coated on ZnO nanowires. A fringed micelle model is proposed to explain the possible gelation mechanism.
This project consists of two parts. One area of focus in the first part is understanding the interactions between a non-ionic, block copolymer type dispersant and hydrophobicallymodified, ethoxylated urethane (HEUR) associative thickeners in water. The dispersant was mixed at various concentrations (0-2% by weight) with HEUR thickeners at 1% by weight concentration in the aqueous medium. This study is an integral part of our attempts to determine mechanisms of viscosity drop when colorant dispersions are added to latex tint base formulations thickened with associative thickeners. One of the HEUR thickeners is a product that has been available for over three decades (HEUR RM-825), whereas the other, HEUR RM-995 is a product recently introduced to minimize the tint base viscosity drop. The old HEUR showed a definitive viscosity maximum as a function of the dispersant concentration. However, the new generation product did not indicate a viscosity maximum within the dispersant concentration range studied; instead it showed a small, but linear increase in viscosity as dispersant level was increased. The next area of focus was on understanding the phase behavior, rheology, and interactions between polymer latex particles and a hydrophobically-modified, ethoxylated urethane (HEUR) associative thickener in water. The influence of the addition of surfactant in some of the systems was also studied. Several types of dispersions were made using two types of polymer latex, two associative thickeners, and two surfactants. Mixtures containing a small particle size acrylic latex and HEUR RM-825 exhibited the most interesting and v complex phase behavior and rheology. In experiments wherein the latex particle volume fraction was kept constant, the addition of HEUR caused stable, followed by phase separated (syneresis) and stable mixtures as HEUR concentration was increased. The observed phase behavior is consistent with previous work reported by other investigators. However, detailed rheological data on systems such as these have not been reported, and this report presents the rheological data and correlate rheology with the phase behavior. The stable latex-HEUR mixtures at low HEUR levels show shear-thinning viscosity with well-defined low-shear Newtonian plateaus. As HEUR level is increased wherein syneresis is observed, erratic rheological profiles with shear-thickening are observed. When HEUR level is increased to a region where no syneresis is observed, low shear Newtonian plateaus reappeared albeit at higher viscosities. The effects of added non-ionic and anionic surfactants on the dispersion are also studied. The main focus of the second part of this project is hybrid organic-inorganic photovoltaics. They have been the focus of recent studies due to their promising use in lowcost, flexible electronics, which can be processed from solution by printing and coating techniques. Understanding the rheology of these nanocomposites is essential in controlling shear flows during printing and application processes. Through rheology,...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.