Advanced pore morphology (APM) foam, consisting of sphere-like metallic foam elements, exhibits some particular mechanical properties with unique application possibilities. The article presents the results of experimental and computational testing of APM foam elements to determine their mechanical behavior under quasi-static and dynamic compressive loading conditions. Additionally, an infrared thermal imaging camera has been used during experimental testing. Evaluated mechanical properties give better insight into the behavior of single APM foam elements under different types of loading and provide a good base for further studies of the topology and morphology influence on the global behavior of composite structures, based on APM foam elements.
The mechanical characterization of advanced pore morphology (APM) foam, consisting of sphere-like metallic foam elements, is very limited since APM foam has been developed only recently. The purpose of this research was thus to determine the behavior of APM spheres and its composites when subjected to compressive loading. Single metallic APM spheres have been characterized with experimental testing and computational simulations, providing the basic properties and knowledge for an efficient composition of composite APM foam structures. Then, the APM foam elements were molded with epoxy matrix resulting in new composite structures. These composites have been adhered together with the epoxy resin achieving partial and syntactic morphology. The mechanical characterization of composite APM foam structures was based on experimental testing results with free and confined boundaries. The results of the performed research have shown valuable mechanical properties of the composite APM foam structures. Furthermore, they offer new possibilities for their use in general engineering applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.